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1.0 SUMMARY 
In support of Air Force objectives to improve cyber capabilities of the war fighter, this project 
endeavored to study learning systems researched and developed for cyber defense of network 
resources. Specifically, intrusion detection systems (IDSs) that were built with machine learning 
(ML) operations were studied to understand: the research behind the approach, the data they were 
designed to protect, the features processed, the algorithms used and the degree to which they were 
resistant and resilient to experimentally induced adversarial data drift. The results of this work 
provide deep insight into the strengths and weaknesses of the studied learning systems while 
operating within an adversarial environment. This insight will enable the design and development 
of future machine learning-based intrusion detection systems (ML-IDS) to be more hardened and 
effective in defending our nation’s networked resources. The experimentation results will aid in 
selecting or designing stronger algorithms, choosing better features, and more effectively 
monitoring resources. The toolset produced to run the experiments may be re-used and enhanced 
to make designing and testing of these future defenses faster and more effective. 

In the course of this research, the team had the opportunity to co-author a book chapter and two 
papers as well as present the findings from this project at several technical conferences.  The book 
chapter and two papers are included in the appendices. 

2.0 INTRODUCTION 

2.1 Purpose 
The Thutmose project supported the Air Force Research Laboratory’s (AFRL) mission to enhance 
cyber capabilities.  Military computer networks are constantly under attack from adversaries who 
wish to compromise the integrity, confidentiality, or availability of system resources.  In order to 
combat these attacks, intrusion detection systems are often put in place to monitor network and 
system resources for signs of malicious activity.  Most commonly used IDSs are designed to detect 
signatures or patterns indicative of known attacks.  However, these systems are rarely able to detect 
zero-day attacks or even slight modifications made to known attacks made by intelligent 
adversaries.  For this reason, much research is being done to incorporate the field of machine 
learning into intrusion detection.  Machine learning is a branch of artificial intelligence (AI) which 
focuses on the creation of models or rules which generalize and represent known data.  An ML-
IDS would either learn a model representing the normal behavior of a system and detect deviations 
from this model, or learn patterns from known attacks that could be generalized to new ones as 
well.  These systems have shown considerable success in research environments, and it appears 
likely that they will begin to become much more common in operational systems.  The focus of 
this effort was on the study of ML-IDSs and their inherit vulnerabilities and weaknesses in order 
to assess their potential defensive capabilities. 

2.2 Background 
AFRL undertakes ongoing activity that requires development, implementation, integration, and 
evaluation of new techniques and software in the cyber domain.  Therefore, there is a need to 
support capabilities that would support operational and mission requirements. 
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2.3 Scope 
This effort was heavily research oriented, focusing on an investigation of previous academic 
research done in the field of ML-IDS, as well as actual implementations of IDSs which employ 
ML techniques.  Key questions about these systems were established and were the focus of the 
initial investigation.  The goal of the effort was to develop a methodology to measure the security 
of these ML algorithms when under attack in an adversarial environment, while identifying inherit 
strengths and weaknesses of these ML models. 

Barreno et al. created a taxonomy to categorize potential attacks an adversary may employ against 
an ML system. Table 1 below is reproduced from the paper “The security of machine learning.” 

Table 1: Taxonomy of attacks against ML systems with examples 

 
This taxonomy was designed to address how an attack can affect the ML system. An attack has 
three dimensions: the Influence, the Security Violation and the Specificity of the attack. Influence 
is either causative or exploratory; the Security Violation attacks either integrity or availability; and 
the Specificity is either targeted or indiscriminate. 

Integrity of the system is a measure that demonstrates the authenticity of data as having not been 
altered from origination or otherwise corrupted by malicious or accidental means. An Integrity 
attack is destructive in nature. Availability is a measure that represents how readily the data is 
accessed and used as intended by authorized users for intended and authorized purposes. An 
availability attack is a denial of service, either of specific resources or large-scale across a network. 

The approach adversaries use may be causative, in which they take actions to bring about changes 
in the learning model through influence over the training data, or else exploratory in which their 
actions simply probe/investigate for potential weaknesses that can be exploited with another 
action. These causative and exploratory actions can be of two forms: targeted and indiscriminate. 
Targeted and indiscriminate attacks differentiate in their specificity and scope. 

This effort primarily investigated targeted causative attacks against integrity, also known as 
adversarial drift, as this type of attack has been addressed very little in existing research.  Under 
this type of attack, an adversary attempts to cause a specific point which is otherwise classified as 
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anomalous by the learning model to be misclassified as normal through influence over the training 
data.  Initial experiments focused on evaluating the extent to which an adversary could affect the 
algorithm's model and the amount of control an adversary would require over the training data in 
order to cause misclassifications in the resulting learning model. 

The most popular forms of ML-IDS utilize anomaly-detection, a method in which algorithms first 
build a model of normalcy using benign network traffic and then evaluate new traffic against the 
model to detect behaviors or patterns deviating from this established normalcy.  These methods 
have been shown to be effective at identifying potential threats to the system. Anomaly detection 
is often the popular choice over other machine learning techniques such as binary classification 
because it is often difficult to attain recent and representative malicious samples on which to train 
the models.  For these reasons, this effort focused specifically on anomaly detection algorithms. 

These activities will assist AFRL/RIGB with future operations. 

3.0 TECHNICAL FACTORS OF EXPERIMENTATION 

3.1 Methods, assumptions, and procedures 
Based on the vast amount of research done to incorporate machine learning into intrusion detection 
systems combined with the inability of signature-based IDSs to detect unknown attacks, it is 
assumed that ML-based IDSs will soon become much more prevalent in operational settings.  
However, it is also known that ML tends to have several significant weaknesses, including a high 
false alarm rate and an ability to be manipulated by an adversary inserting strategic data.  
Therefore, studying the security and weaknesses inherit in ML-IDSs was considered an important 
research platform.  Specifically, we wanted to study the vulnerability of ML systems to adversarial 
drift, a technique by which an adversary slowly inserts benign data that, over time and across 
multiple retrain iterations, causes the learning models to drift towards accepting previously 
anomalous points. 

A series of questions about the systems studied was generated.  The answers to these questions 
were deemed necessary as they would drive experimental direction and allow us to more accurately 
assess the potential defensive weaknesses in the IDSs.  The questions included the following: 

• What are the specifics of the machine learning algorithm implemented by the system? (If 
it uses a neural network, is it an Elman network, Kohonan network, etc.?) 

• What type of data does it use? (Network-based or host-based? Packet headers or payloads? 
System calls?) 

• How does it do feature selection or dimensionality reduction? Does it employ a kernel 
function? 

• How much data is used to train the initial classification model? 

• How is the classification model re-trained?  Is the existing model updated or is it replaced 
with a new one? 

• How often is the model re-trained and how much new training data is minimally required? 
Our research approach began by identifying those machine learning algorithms which were most 
prominent in the published literature and in available open-source implementations of ML-IDS.  
After these algorithms were determined, the simplest ones that were also found to be common in 
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the literature were selected for further, more in-depth study.  During this stage, we attempted to 
find the most common answers to the above questions for each algorithm.  The idea was to begin 
with the simplest algorithms and progress to those which were more complicated, applying lessons 
learned from the simpler cases along the way. 

In an authentic network, an intruder would have limited access to information about an ML-IDS 
which has been deployed. While we certainly have a concern for external threats, the worst case 
scenario is an insider threat or an intruder who has already gained access to the internal network. 
We base our initial assumptions on this perspective. In order to have a worst case scenario baseline 
where a potential adversary would have near full control over the IDS and all associated and 
requisite resources, several assumptions were made to start with.  Again the idea was to start with 
the simpler worst-case scenario, and to slowly remove assumptions in subsequent experiments, 
applying lessons learned from the simpler cases along the way. 

We operated under what is known as the contamination assumption. This means that the adversary 
has the ability to insert points that will be used during retraining of the ML-IDS.  Model drift is 
often accounted for through the use of retraining and online learning, so it is not unreasonable to 
assume an adversary could take advantage of this window to insert data. In our work, we also 
limited this assumption to create a slightly more realistic case in which insertion points must be 
classified as benign by the existing classifier in order to be included. We assume that the adversary 
would wish to remain undetected by including only points that are not flagged as suspicious and 
can be allowed into the re-training dataset via normal traffic through the monitoring ML-IDS. The 
contamination assumption is necessary if the adversary desires to induce drift in the models and 
force the ML-IDS to consider a point as normal that previous models would have otherwise 
identified as anomalous and blocked. 

In initial experiments, we assume the adversary has full knowledge of and access to the IDS, its 
classification algorithms, the training data, and the results of classification. From this worst case 
scenario, we could potentially dial back the assumed knowledge and access privileges an adversary 
might have in order to gain a more realistic view of the measured weaknesses for each algorithm 
in an adversarial environment. 

The main goal of our work was to develop a methodology using a framework to study and test ML 
algorithms which have or may be used in intrusion detection systems. This research was done in 
an effort to demonstrate the strengths and weaknesses of these algorithms in regards to their 
susceptibility to adversarial drift and offer suggestions for why and in what ways they can be 
effectively used in an IDS. We intended to create a generic, universal framework to allow for the 
simple incorporation of various additional algorithms using various training data sources. We 
wanted to be able to compare multiple algorithms, multiple implementations of similar or identical 
algorithms and to create repeatable experiments. Through experimental iterations, the framework 
should provide statistical measurements and analysis that better inform a security administrator. 

We developed a Java application programming interface (API) based around Monte Carlo 
simulations to implement this framework and a prototype graphical user interface (GUI) to 
expedite experimentation with the API and enable automation of experimental runs. This API and 
GUI are detailed in section 3.2.4 Monte Carlo Simulator.  The API allowed us to run a number 
of experiments using various ML algorithms and data sources which are discussed further in 
section 3.2.5 Model Drift Experiments. 
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The mathematical procedure defined in Figure 1 was developed to measure the number of points 
an adversary must insert in order to cause a misclassification on a particular point, and therefore 
the resistance of the ML algorithm to a targeted causative integrity attack or induced model drift.  
In the figure, I is equal to the list of injection points selected by the adversary, g(x0)I is equal to the 
probability of x0 according to the model with I injected into the training set, and γ is equal to the 
anomaly threshold. 

 

Figure 1: Experimental approach to determine effort required by an adversary to force 
misclassifications 

A key part of this effort was to determine the most optimal method for calculating x*, which is the 
point that causes the greatest model drift in the direction of the adversary’s target point.  A generic 
approach was desired that would allow a number of different machine learning algorithms to be 
quickly analyzed using our developed methodology.  A number of different optimization strategies 
were researched and developed and are detailed in section 3.2.  

3.2 Results and Discussion 

3.2.1 Algorithm Selection. Several machine learning algorithms that were most commonly used 
in the research were identified.  These included K-nearest neighbor (KNN), support vector 
machines (SVM), artificial neural networks (ANN), decision trees (DT), self-organizing maps 
(SOM), hidden Markov models (HMM), and Bayesian classifiers.  The most common ML 
algorithms proposed for IDSs according to two separate literature reviews are summarized in 
Figure 2 and Figure 3. 
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Figure 2: Year-wise distribution of articles for single classifiers according to (Tsai, Hsu, 
Lin, & Lin, 2009) 

 

 

Figure 3: Details of surveyed papers according to (Tavallaee, Stakhanova, & Ghorbani, 
2010) 

Based on these findings, additional research, and findings from available real-world ML-IDS, we 
selected four algorithms, Centroid Anomaly Detection, HMM, SVM, and K-Means Anomaly 
Detection, to further explore initially.  According to our research, these algorithms were among 
the most commonly explored as well as being three of the simpler ML algorithms to conceptualize, 
visualize, and understand.  Upon selecting these algorithms, we began identifying and studying 
research papers which described IDSs using each algorithm to determine how they answered the 
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questions posed above.  Unfortunately, we did not have time to explore the additional identified 
algorithms within the scope of this effort. 

The research papers studied primarily relied on two different sources of data.  The first was 
network connection records and the second was system call traces.  Much of the research utilized 
the dataset from the Third International Knowledge Discovery and Data Mining (KDD) Tools 
Competition as their source of network connection data.  This data, referred to as the KDD Cup 
’99 dataset, consists of individual connections, each labeled as either normal or as a specific type 
of attack.  It was created by processing the tcpdump portions of the 1998 Defense Advanced 
Research Projects Agency (DARPA) IDS Evaluation dataset.  While it is widely used in the 
research, the KDD Cup ’99 dataset has several known problems and is outdated.  The system call 
traces used in much of the research come from the Basic Security Module (BSM) audit data portion 
of either the 1998 or 1999 DARPA IDS Evaluation data. 

A variety of dimensionality reduction and data pre-processing techniques were discussed in the 
research.  Some of the most common included normalization, principal component analysis (PCA), 
converting symbolic features to numeric, and converting system call traces to frequencies of 
individual calls. 

3.2.1.1 Centroid Anomaly Detector.   The first algorithm studied was the simple centroid anomaly 
detector.  This algorithm is trained by simply finding the empirical mean of the training examples.  
An unlabeled data point is then tested by calculating its Euclidean distance to the mean, or centroid.  
If this distance is greater than a determined threshold, then the point is considered to be anomalous.  
Calculation of a data point’s anomaly score is summarized below. 

∑
=

−=
n

i
ix

n
xxf

1

1)(  

Figure 4 shows an example of a centroid anomaly detector in two-dimensional space.  The green 
points within the anomaly threshold would be classified as normal while the red points that fall 
outside of the threshold would be considered anomalous.  Despite its incredible simplicity, this 
algorithm is popular in various security applications.  We chose to run initial experiments with the 
centroid anomaly detector due to its low computation time, applicability, and its ability to be easily 
comprehended and visualized.  Its primary purpose is to be used as a baseline experiment to 
demonstrate our approach. 

We implemented this algorithm in Java and incorporated it into our API (discussed in section 
3.2.4.1 Java API) for experimentation. 
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Figure 4: Centroid Anomaly Detector 

 
3.2.1.2 Hidden Markov Model. The next algorithm examined was the Hidden Markov Model.  An 
HMM is a machine learning model consisting of hidden states which follow the Markov property 
and have associated initial and transition probabilities.  In addition, an HMM consists of observed 
variables, with each variable having a certain probability of occurring in each hidden state.  
Sequences of observed variables are used to train the HMM and learn the hidden state and observed 
variable probability matrices.  Once learned, these probabilities are used to determine the 
probability score of new test observation sequences.  Figure 5 displays a visualization of an HMM.  
Each arrow connecting an observed variable to a hidden state would have an associated probability, 
as would each arrow connecting the hidden states.  This algorithm was chosen again due to its 
relative simplicity as well as its common appearance in ML-IDS research. 
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Figure 5: Hidden Markov Model 

 

We utilized the open-source Java library JAHMM implementation of HMMs to incorporate this 
algorithm into our experimentation framework (discussed in section 3.2.4 Monte Carlo 
Simulator) for initial experiments.  Additionally, we identified two available ML-IDS which 
implement and rely primarily on HMMs, SuStorID and HMMPayl, which are discussed in sections 
3.2.2.1 SuStorID and 3.2.2.2 HMMPayl. 

3.2.1.3 Support Vector Machine. The third algorithm investigated was the support vector machine.  
An SVM is generally a binary linear classifier which classifies an object based on which side of a 
dividing hyperplane it falls.  The hyperplane is constructed to create maximum separation between 
the two classes in the training set.  In cases where the two classes are not linearly separable, a 
kernel function such as the radial basis function (RBF), may be applied to map the data into a 
higher-dimensional space.  Figure 6 shows a simple example of an SVM in three dimensional 
space. 
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Figure 6: Support Vector Machine 

Several variations of SVMs were described in the literature.  The most common was the standard 
linear binary SVM which separated “normal” data from “attack” data.  Also, slight modifications 
to this algorithm were proposed, such as the Robust SVM which introduces new slack terms to 
address the over-fitting problem.  In addition, an anomaly detection method, or one-class SVM,  
was described which creates a hyperplane that separates the entire training set from the origin.  If 
an unknown point is separated from the origin then it is considered normal, otherwise it is 
considered anomalous or an attack.  Using SVMs to classify an unknown point as one of multiple 
classes was also suggested.  A series of binary SVMs are created, and then organized into a 
decision tree.  For example, an SVM may be created to separate classes A and B from C and D, 
another one to separate A from B, and another to separate C from D. 

As we had previously decided to focus primarily on anomaly detection algorithms, we chose to 
investigate one-class SVMs.  The LibSVM library implementation of SVMs was used to 
incorporate this algorithm into the experimentation framework (discussed in section 3.2.4 Monte 
Carlo Simulator). We also identified and experimented with an open-source ML-IDS called 
McPAD, which utilizes one-class SVMs and is discussed in section 3.2.2.3 McPAD. 

3.2.1.4 K-Means Anomaly Detector. As the research progressed, we additionally chose to 
investigate the K-Means anomaly detection algorithm.  This algorithm operates by first clustering 
the training data using the K-Means clustering algorithm in the feature space.  K-Means clustering 
groups the training data into a set number of clusters, K, by first placing K centroids in the feature 
space. Then, iteratively until a termination criterion is met, all points are assigned to the nearest 
centroid, and the centroids are re-centered to the mean of the assigned points.  After the cluster 
centroids are determined using K-Means, a threshold bound is set around each such that a set 
percentage of the training points lie within the threshold.  At test time, a test point is assigned to 
the nearest cluster centroid as is determined to either fall inside or outside of the threshold bound.  
The point is classified as anomalous if it is not inside the threshold and normal if it is within the 
threshold. 
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This algorithm is similar to the centroid anomaly detector, but the clustering step allows for 
multiple centers of density within the training data.  This algorithm was chosen for its common 
occurrence in anomaly detection applications and its relative simplicity while still adding a layer 
of complexity to the centroid anomaly detector.  Also, we desired an additional distance-based 
algorithm that operated in the feature space with which to test and verify our optimization methods 
(section  
3.2.1.5 Optimization Selection.  The K-Means Anomaly Detection algorithm was implemented in 
Java and incorporated into our experimentation framework (discussed in section 3.2.4 Monte 
Carlo Simulator). The JavaML library was used to implement the K-Means clustering step. 

3.2.2 Real World ML-IDS. A variety of real world implementations of IDSs that relied on ML 
were identified.  Three of these systems were successfully incorporated into our experimentation 
framework (section 3.2.4 Monte Carlo Simulator) and used for model drift evaluation. 

3.2.2.1 SuStorID. The first such system was SuStorID, an open-source host-based IDS for web 
services which uses Hidden Markov Models to perform anomaly detection.  SuStorID is written 
in Python, utilizing the Django framework, and is coupled with the Apache-based ModSecurity 
web application firewall to gather training data and provide real-time counteractions. SuStorID’s 
models are trained using recent HTTP requests and can be retrained at any time using the tool’s 
interface.  We installed and configured SuStorID on an Ubuntu VM and began initial analysis of 
the tool and its algorithms. 
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Figure 7: SuStorID’s user interface 

 

3.2.2.2 Technologies Used.   In order to test SuStorID, a web application was required to be placed 
on the apache web server to be protected by the IDS. Initially a simple web page containing an 
HTML form (Figure 8) was created to meet minimum requirements for SuStorID training 
processing. 
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Figure 8: Simple HTML Test Page 

We next incorporated SuStorIDS into our experimental framework (section 3.2.4 Monte Carlo 
Simulator) to allow for the simple processing of end-to-end experiments. To support the training 
process, automated generation of training data needed to be produced as well as an automated 
means of creating and inserting drift and test points into the training datasets. Several approaches 
were tried. Table 2 below provides a concise summary of each tool and how it was tried within the 
experimental framework. 

Table 2: Methods utilized during experimentation with SuStorID to generate training and 
test data 

JMeter 

Java based functional and performance testing tool which uses XML to specify 
the interfaces to automate testing. It can be used to test Web (HTTP and 
HTTPS), SOAP/REST, FTP, and database via JDBC, LDAP, Message-oriented 
middleware (MOM) via JMS, Mail (SMTP, POP3 and IMAP), MongoDB 
(NoSQL), Native commands or shell scripts, TCP. 
Was too slow for large volume of training dataset traffic generation, but it is 
used to initiate the training sequence for SuStorID due to the high level of 
control provided with the simple XML format it uses. 

Java 

Used the HTTP libraries to create and send HTTPRequests. 
This is the method finally used to generate the traffic to be used in the training 
datasets due to the ease with which new data can be generated quickly while 
maintaining prefect control over the contents of the packets. This is key in 
isolating the one pertinent feature examined in the experiment. 

Edit DB tables Java use of JDBC libraries to add rows to DB storing traffic in order to add 
requests. 
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This was tried and replaced due to the performance impacts of coordinating 
several steps such as: locking and unlocking the tables; shutting down and 
bringing up the IDS; monitoring the IDS to make sure the locking  and 
shutdown/restart steps occurred after all requisite traffic had been received. 

Edit/replay PCaps 

Using a modeled HTTPRequest inside a PCap (network packet capture) file to 
be a template for generated traffic for training data, insertion data and test data. 
This method was tried and held for use later in the examination of other IDS’s. 
For the purposes of SuStorID it was very slow performance due to the PCap 
editing software and the PCap replay software currently being so slow to 
execute with faster options available. 

Mergecap 
Wireshark comes with a host of tools for manipulating PCaps files. Mergecap is 
one used to merge multiple packets from 2 or more PCap files into one larger 
PCap file for ease of processing. Some IDSs required the training data to be in 
one large PCap file for one or more steps. 

Mechanize-perl 

Perl scripts using HTTP library to generate HTTPRequests. 
This was used after a more comprehensive website based upon WordPress 
was developed as a more realistic web application for testing. When SuStorID’s 
unreliability became an issue for the more realistic website, this approach was 
abandoned as not needed any longer. 

Selenium 

Scripting to click through on the browser to generate traffic for training. 
Very slow execution as it ran in a browser and would not have been usable for 
later tests proposed to be run on the HPC cluster due to its reliance on a GUI in 
the form of the web browser. 
Scripting to click through on the browser to generate traffic or training. 

Apache Bench (ab) Would not install properly, nothing accomplished with it. This is a risk with Open 
Source Software. 

Httperf 
Great large volume of traffic generated, not enough control of what precisely 
was IN the traffic to be usable for selective creation of insertion and test points. 
We required control over every feature examined by the IDS and some of them 
were not accessible using Httperf 

Tsung Too complicated to configure and make work for multiple types of traffic. 

Web Scarab Too slow and resource intensive resulting in averaging one HTTPRequest 
generated per second. 

HTTPReq Generator Missing functions for execution to work. Did not provide the function to specify 
some features monitored by IDS. 

Metasploit (from Kali 
Linux) 

An easy way to generate web server HTTP traffic is to use Metasploit to run the 
WMAP module. WMAP probes the server port which can rapidly generate 
thousands of packets using the available interface. These packets are 
essentially scripted so are only useful for generating the bulk of the normalized 
traffic, but not the specific insertion and test traffic. 

3.2.2.3 HMMPayl. The next ML-IDS investigated was HMMPayl. HMMPayl is an open-source 
network IDS, written in Java, and developed by PRA Lab.  It utilizes HMMs trained using the 
Baum-Welch algorithm to detect anomalous packets. HMMPayl inspects network packet payloads 
represented as byte strings, using a sliding window to extract n-grams from these byte strings, and 
uses these n-grams as the feature set to train its models. In an effort to increase classification 
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accuracy, HMMPayl uses an ensemble of HMMs, combining the results from each to make its 
predictions.  Figure 9 outlines the architecture of HMMPayl. 

 

 

Figure 9: HMMPayl process overview 

 

In order to facilitate experimentation with HMMPayl, we first incorporated it into our framework 
(section 3.2.4 Monte Carlo Simulator).  Since HMMPayl is written entirely in Java, as is our 
framework, this task was simplified.  The key parts of the ML-IDS are the ML model training step, 
and the test step.  The code responsible for these tasks was located in HMMPayl’s source and 
extracted to our own class.  This code relies on the existence of a PCap file for training and then 
either monitors traffic for testing, or uses a separate testing PCap file.  In order to support this 
training and test process, a method for the automatic generation of packets needed to be produced. 
We reused the code developed for experimentation with SuStorID to send custom HTTP requests 
that were then collected into PCaps and used for training/testing.  HMMPayl uses the jpcap library 
to capture packets, create PCaps, and to parse them to create its training and test sets.  A bug 
existed in the jpcap library utilized by HMMPayl that was causing errors during processing.  The 
issue was fixed by modifying jpcap’s native C code and re-making the files.  Additionally, 
HMMPayl’s Java code was modified because it did not properly close its captors after it was done 
with them, which was leading to errors during iterative experiments.  This allowed for initial end-
to-end experiments to run successfully. 

The method of creating the training sets by sending custom HTTP requests and capturing the 
packets proved to require too much processing time in order to effectively run iterative 
experiments.  Even if working directly with existing PCaps, processing the files and extracting the 
packet payloads was computationally expensive.  However, examining the code revealed that all 
HMMPayl uses to train its models are the byte strings that make up the packets payloads, which 
are just sequences of numbers.  We therefore stripped out the code from HMMPayl which 
processes the PCaps and extracts the packet payloads so that it could work directly with lists of 
numbers.  This allows us to extract the payloads from our training files prior to the experimental 
runs, and crafting insertion points becomes as simple as creating lists of numbers.  This makes 
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training more dynamic, as we can more easily choose which points from the training set to utilize 
and can store the training sets in other formats such as CSV or in a database. 

Additionally, HMMPayl’s original code required the trained HMM models to be saved to a file 
after training, and then reloaded each time a new point was tested.  This repetitive file IO led to 
increased computation time and slowed down iterative experiments.  Therefore, we modified 
HMMPayl’s source code to store the trained HMM models in memory, saving significant time 
during experimental runs. 

3.2.2.4 McPAD. The next ML-IDS analyzed was McPAD (Multiple classifier system for accurate 
Payload-based Anomaly Detection), another open-source network IDS written in Java and 
developed by PRA Lab. McPAD is a breed of ML-IDS which analyzes the payloads of web traffic 
it is monitoring. This analyzed payload is within the application layer of the OSI model. The 
analysis tries to establish whether or not the payload is malicious assuming that the byte 
distribution of a malicious payload differs from that of a normal payload. McPAD uses a 2 nu-
gram analysis of the payload byte distribution when building the models to use for discriminating 
new incoming normal payloads from potentially malicious ones.  This analysis is an approximation 
of the n-gram analysis commonly used in text-classification. A 2 nu-gram consists of two bytes 
from the packet payload byte string that are nu bytes apart. A sliding window across the payload 
is used to find all of the 2-nu grams. These are then clustered to decrease the feature set size from 
2562 dimensions down to a specified number of dimensions (160 by default). Using the paradigm 
of Multiple Classifier Systems, McPAD leverages an ensemble of Support Vector Machines to 
perform the processing of both model development and intrusion detection using the 2 nu-gram 
analysis of byte distribution in payloads of incoming traffic to the webserver or hosted web 
applications it is protecting.  McPAD trains multiple SVM models utilizing different values of nu 
for each when building its 2 nu-grams and combines the results of each at test time. Figure 10 
presents a simplified overview of McPAD. 

 

 

Figure 10: McPAD process overview 
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The first step towards analyzing McPAD’s susceptibility to model drift was to incorporate it into 
our experimental framework (section 3.2.4 Monte Carlo Simulator).  Like HMMPayl, McPAD 
is also written entirely in Java, so this task was again simplified. The code responsible for training 
and testing the SVM models was located in McPAD’s source and extracted to our own class.  This 
code extracts data from a PCap file to train its models and then either tests monitored live traffic 
against the models, or uses a separate test PCap file.  In order to support this training and test 
process, we needed to produce a method for the automatic generation of packets.  We reused the 
code developed for experimentation with SuStorID to send custom HTTP requests that were then 
collected into PCaps and used for training/testing. McPAD also relies on the use of the jpcap 
library, so again the bug in jpcap’s native C code had to be fixed.  Several other modifications to 
McPAD’s source code were also necessary in order to properly process end-to-end experiments. 
The original McPAD code would shut down any time a packet was encountered that it could not 
cast to an IP packet, which occurred often.  The code responsible for this was located and modified 
to continue processing.  Additionally the code was edited so that during live monitoring, McPAD 
would actually use the network interface controller (NIC) specified rather than always using the 
second one in the device list.  Also, like HMMPayl, McPAD did not properly close its captors after 
it was done with them, which was leading to errors during iterative experiments. This was fixed.  
Code was also added so that during testing, the probability score of the packet with the lowest 
probability score was tracked.  This is because a single “test point” may span multiple packets, 
and if a single packet fell below the anomaly threshold, then essentially the test point was detected. 
These modifications allowed us to run initial experiments. 

The method of creating the training sets by sending custom HTTP requests and capturing the 
packets again proved to be too computationally expensive to effectively run iterative experiments.  
Similar to HMMPayl, however, McPAD only requires the byte string from the packet payloads to 
train its models.  We therefore stripped out the code from McPAD which processes the PCaps and 
extracts the packet payloads so that it could work directly with lists of numbers representing the 
byte strings. This allows us to extract the payloads from our training files prior to the experimental 
runs, craft insertion points by simply creating lists of numbers, dynamically create training sets, 
and store training sets in a variety of formats. 

Additionally, McPAD’s original code required that the training data (after 2 nu-gram analysis), the 
feature cluster information, and the SVM models were all saved to a file during training.  The 
cluster information and the SVM models then had to be reloaded at test time.  During iterative 
experiments, this repetitive file IO added unnecessary computation time.  Therefore, we modified 
McPAD’s source code so that this information was all stored in memory during experimental 
iterations, increasing the speed of experiments. 

3.2.2.5 PESCAN. Another ML-IDS investigated was PESCAN, a malware analyzer developed by 
BAE Systems.  PESCAN uses a byte scanner to detect executable code embedded in network 
traffic and inspects its structural properties for patterns indicative of malicious executables.  
PESCAN is incorporated into the Suricata framework, a popular open-source network IDS 
developed by the Open Information Security Foundation (OISF).  To perform the learning system 
training phase, PESCAN analyzes portable executable meta-data for structural features, numerical 
properties, and import lists.  It trains decision trees, a popular ML algorithm, using the feature 
criteria mentioned above, and utilizes them for the classification of traffic as malicious or not.  
PESCAN examines portable executables found in the traffic and processes them to compute a 
PEScore (risk metric) in order to aid in identifying portable executables that are likely to be 



Approved for Public Release; Distribution Unlimited. 
18 

malicious.  We installed and configured PEScan on an Ubuntu VM. However, due to limited access 
to useable data and the significant difference in the type of data this ML-IDS monitors from the 
others studied, we did not find time to further experiment with it during this period of performance. 

3.2.2.6 Additional. As ML-IDS is still a new and emerging technology, few actual 
implementations, particularly open-source implementations, are currently available for 
experimentation. During our research, however, we identified several applications of ML for cyber 
security purposes which were either open-sourced or in use by corporations. These technologies 
are summarized in Table 3. We did not further explore these applications under this effort because 
their implementations/code were not made available to us or because they were deemed less 
appropriate / lower priority than those discussed in the previous sections and time did not allow it.  
They do, however, provide compelling evidence that machine learning is becoming more prevalent 
in cyber security and further justify our research. 

Table 3: Machine learning cyber security applications identified but not further researched 

Application Description 

Clonewise Utilizes Random Forest classification to detect package clones and infer security vulnerabilities 
from those clones that are out of date. Used by Debian Linux. 

Zozzle Tool developed by Microsoft Research to perform static analysis of JavaScript code on a site and 
determine whether or not it is malicious. Uses Bayesian classification. 

MLIDS 
The Machine Learning Intrusion Detection System (MLIDS) is a tool funded by the DoD to detect 
attacks against High Level Architecture (HLA) and Distributed Interactive Simulation (DIS) 
simulation environments. Uses Support Vector Machines. 

Nova Creates a set of honeypots, and then uses ML to identify patterns of hostile network traffic. Uses 
K-Nearest Neighbors for classification. 

ORCA 
Oak Ridge Cyber Analytics (ORCA) is a suite of tools that include ML capabilities for analyzing 
network traffic to detect zero-days and other attacks and for distinguishing the real attacks 
highlighted by IDS alerts from expected events. Funded by Lockheed Martin and was included in 
their experimental Defense and Self-Healing Network. 

HMM-Web Developed by PRA Lab to detect server side attacks against web applications. Uses an ensemble 
of Hidden Markov Models to detect anomalies. 

TotalADS 
The Total Anomaly Detection System (TotalADS) is a framework for detecting host-based 
anomalies. Analyzes execution traces and log files using Sequence Matching (SQM), Kernel State 
Modeling (KSM), and Hidden Markov Models. 

Cynomix Tool developed by Invincea and funded by DARPA to analyze malware and detect malicious 
programs. Uses ML to compare the similarity of unknown programs to known malware strains. 

CylancePROTECT 
Endpoint security tool developed by Cylance that uses ML to detect and prevent the execution of 
advanced malware and persistent threats. Collaborating with Dell to be integrated into the Dell 
Data Protection | Endpoint Security Suite Enterprise. 

Exabeam Platform developed by Exabeam performs user behavior analysis using unsupervised ML. Uses 
anomaly detection to detect cyber-attacks and insider threats. 

 

3.2.3 Optimization Selection. In order to properly test our approach for measuring the 
susceptibility of ML-IDSs and their associated algorithms to model drift, we had to first develop 
a method to find the value of x which maximizes g(xo)I+x - g(x0)I s.t. g(x)I > γ (Figure 1).  That 
is, we wanted to develop an optimization algorithm to automatically generate the point which when 
added to the training set, causes the greatest amount of drift in the resulting ML model towards the 
desired test point.  We initially developed optimization algorithms and heuristics that were based 
on detailed knowledge of the ML algorithms under study.  However, these optimization 
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approaches, while reasonably effective, required a thorough study of the ML algorithms and were 
generally only applicable to a single ML algorithm.  This required an understanding and a time 
investment that a researcher may not have in a realistic environment. Therefore, to make our 
methodology more generic and applicable to future ML algorithms, we began to study universal, 
heuristic-based optimization approaches that were ML algorithm independent.  The optimization 
approaches we studied and developed, both ML algorithm dependent and independent, are detailed 
in the following sections. 

3.2.3.1 Centroid Anomaly Detector Optimization. The approach for generating the point which 
optimally drifts a centroid anomaly detector toward a target point is relatively straightforward and 
is, in fact, mathematically provable. The adversary determines the vector between the target 
anomalous point and the current centroid and inserts a point along this vector at a distance from 
the centroid equal to the anomaly threshold value. This approach is illustrated in Figure 11. 

 

 

Figure 11: Illustration of optimal drift strategy against a centroid anomaly detector 

This insertion point will appear normal, due to falling within the anomaly threshold, but upon 
retraining of the ML model will drift the centroid in the direction of the target point. 

3.2.3.2 K-Means Anomaly Detector Optimization. A similar approach was developed for 
generating the point which optimally drifts a K-Means anomaly detector towards accepting a target 
point as normal. The adversary determines the cluster centroid that is nearest to the target point, 
determines the vector between the centroid and the target point, and inserts a point along this vector 
that is a distance away from the centroid equal to the anomaly threshold value.  This causes an 
effect similar to that induced on the centroid anomaly detector.  Upon retraining, the cluster is 
drifted towards the target point, until the point is eventually no long classified as anomalous.  
Additionally, the insertion points will appear normal due to falling within the threshold bound of 
the cluster. 

3.2.3.3 HMM Optimization. Through an investigation of HMMs, we developed a fast method to 
determine the near-optimal points for inducing model drift. Since the sequence probabilities 
returned by an HMM are largely driven by the frequency of individual symbols in the training set, 
we chose to focus our approach on these frequencies. We wanted to target the specific n-grams 
from the test point that contained symbols common in the point but that also had low probabilities, 
meaning that they likely contained symbols uncommon in the training set. Therefore, to create the 
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adversary’s insertion points, for a set number of iterations we iteratively added symbols to the 
insertion point according to the equation below where T(x) is the number of times symbol x occurs 
in the test point and Tr(x) is the number of times x appears in the training set.  

2
*

)(
)(maxarg

xTr
xT

x
x =  

Then, if the constructed insertion point is considered anomalous by the existing model, symbols 
in the point are iteratively replaced by the symbol occurring most frequently in the training set 
until the point is no longer flagged. 

During our experiments with HMMs, various other optimization approaches were tested but were 
determined to be less effective for various reasons.  These approaches are described in Table 4. 
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Table 4: Optimization strategies examined for generating optimal drift points for HMMs 

Method Explanation Issues 
Genetic algorithm. Fitness function is 
defined as the increase in test score of the 
test point when adding insertion point to 
the training set and retraining. Tried 
various methods including different 
mutation/cross-over methods and a 
variation that allowed for variable length 
solutions. 

Popular and easy to implement 
machine learning optimization 
method.  It is generic and 
requires little prior knowledge of 
the ML algorithms. 

Requires retraining the model for each 
fitness calculation.  This takes far too long 
for large data sets.  Was not producing 
great results in a reasonable amount of 
time. 

Particle Swarm Optimization. Fitness 
function is defined as the increase in test 
score of the test point when adding the 
point to the training set and retraining. 

Popular and easy to implement 
machine learning optimization 
method. It is generic and 
requires little prior knowledge of 
the ML algorithms. 

Requires retraining the model for each 
fitness calculation. This takes far too long 
for large data sets. HMMs consider 
individual character frequencies so 
distance between points is irrelevant, 
making this approach not highly effective 
for this purpose. 

Test all permutations (with replacement) of 
the test point and find the one that has the 
lowest test score while also being above 
the anomaly threshold. If there isn’t one 
above the threshold, replace one of the 
values with a random value from the 
training set. 

Does not require retraining the 
ML models. HMMs consider 
character frequencies so 
designed to increase frequency 
of characters in test point. 

For large test points, the time to test all 
permutations is much too high. 

Incrementally add the character from the 
test point that occurs the least in the 
training set until the point is the length of 
the average point from the training set. If 
the point is detected, iteratively replace a 
character in the point with the most 
frequently occurring character in the train 
set. 

Assumes full knowledge of the 
training data. Approach is based 
on character frequencies while 
not requiring testing all 
permutations of test point. 

Often the character from the test point 
which occurs the least frequently in the 
training set also occurs infrequently in the 
test point. This means that it will occur in a 
small number of n-grams and have a small 
effect on overall probability of the point. 

Incrementally add the n-gram with the 
lowest score from the test point. Score in 
calculated for an n-gram by summing the 
difference in number of occurrences in the 
training set and the test set for each 
character in the n-gram. If the point is 
detected, iteratively replace a character in 
the point with the most frequently occurring 
point in the train set. 

HMMs consider sequences of 
characters, so an approach 
which adds sequences with low 
probabilities to the test point 
could improve results. The 
selected scoring method seemed 
to correlate with n-grams that 
had low probabilities yet 
contained common characters in 
the test point. 

Experimental results were actually 
considerably worse than using selected 
method. 

3.2.3.4 SVM Optimization. During our experimentation with SVMs, we developed a method to 
quickly determine the insertion point which will have the near-optimal drift effect. The SVM 
implementation that we chose utilized a Gaussian kernel, so the score of a test point is largely 
driven by its distance from the support vectors in the input space.  Additionally, not all training 
points are considered support vectors, so we must attempt to ensure that the insertion point is 
chosen as a support vector in order to have an effect on the test score.  With these factors in mind, 
we developed an initial method to generate insertion points that relies an in-depth knowledge of 
the SVM.  For our chosen approach, we find the support vector nearest to the target anomalous 
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point and insert the point along the vector between the two that is closest to the target anomaly 
without being flagged as anomalous.  This method proved to be effective during initial experiments 
with training data sampled from a Gaussian distribution.  However, it did not appear to extrapolate 
well to alternate data distributions. 

During our experiments with SVMs, various other optimization approaches were tested but were 
determined to be less effective for various reasons.  These approaches are described in Table 5. 

Table 5: Optimization strategies examined for generating optimal drift points for SVMs 

Method Explanation Issues 

Particle Swarm Optimization. Fitness 
function is defined as the increase in test 
score of the test point when adding the 
point to the training set and retraining. 

Popular and easy to implement 
machine learning optimization 
method. It is generic and requires 
little prior knowledge of the ML 
algorithms. 

Requires retraining the model for each 
fitness calculation. This takes far too long 
for large data sets.  

In the kernel space, find the point that is 
closest to the test point which also lies on 
the separation plane defined by the alpha 
values and the threshold. Then use particle 
swarm optimization to find the point in the 
input space which when kernelized lies 
closest to this point and is classified as 
normal. 

Does not require retraining the ML 
models. The goal was that this 
point would push the separation 
plane in the direction of the test 
point the furthest. 

When adding the point to the training set, 
it is not selected as a support vector 
during training, so has no real effect on 
the model. 

3.2.3.5 Universal Optimization. While the algorithm-specific optimal point generation algorithms 
that we developed were relatively effective, we wanted to develop an approach that was more 
universal and able to quickly test multiple ML algorithms without requiring a deep understanding 
of their details.  This would make our methodology for measuring the susceptibility of ML 
algorithms to model drift much more applicable to future algorithms we wish to analyze. For this 
reason, we investigated heuristic based optimization methods.  Heuristic methods make few 
assumptions about the problem being optimized and can generally search large spaces of candidate 
solutions.  These methods require a custom fitness function, or a measure of how good or 
applicable a potential solution may be.  In order to make sure our implementations remained 
algorithm-independent, we wanted to develop a fitness function that relies only on knowledge of 
the resulting test scores of the target point and thresholds of the algorithms.  Another benefit of 
these heuristic methods is that they do not require this fitness function to be differentiable. 

3.2.3.5.1 Fitness Functions. We developed several different fitness measurements during our 
experimentation.  The first that was relatively successful was to use the resulting test score of our 
target point after retraining the ML models with the potential point inserted into the training set. 
The optimization algorithm would then find the point that when added to the training set, 
maximized the score of the target point. While testing this method, however, we found that it was 
often the case that while the resulting test score of the target point would increase, the anomaly 
threshold would often increase at a nearly equal rate.  This meant that the classification of the 
target point would never change, and it would remain anomalous to the ML models.  To remedy 
this, we designed a fitness function that would use the difference between the resulting score of 
the target point and the resulting threshold.  The algorithm would then find the point which 
minimized this gap to ensure that while the test score was increasing, the target point also appeared 
less anomalous to the ML models. If a point was found that caused the test score to become larger 
than the anomaly threshold, then it was selected automatically.  If the test score of the potential 
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insertion point made it appear anomalous to the existing classifier, then it was given a score of 0 
and no longer considered.  This method had improved results during experimentation.  
Additionally, it had the interesting side-effect that often the points being generated would focus 
primarily on lowering the anomaly threshold rather than increasing the test score of the target 
point. 

3.2.3.5.2 Particle Swarm Optimization. The first heuristic based optimization approach that was 
used to automatically generate insertion points to induce model drift was Particle Swarm 
Optimization (PSO).  PSO is an evolutionary algorithm that works by placing a certain number of 
particles (candidate solutions) into the feature space which then, for a certain number of iterations, 
travel to new locations searching for an optimal solution.  Each particle’s movement is dictated by 
mathematical calculations based on the particle’s position and velocity, the best point seen by the 
particle, and the global best point seen by any particle.  We chose this algorithm due to its wide-
spread use and popularity and its proven success in a variety of optimization problem spaces.  We 
utilized JSwarm, an open source Java library, and its implementation of PSO during our 
experimentation. The fitness function described above was implemented and used to measure the 
fitness of candidate points during the experiments.  This optimization approach allowed for some 
success in initial experiments. However, it was noted that this approach would not be the most 
effective for algorithms like HMMs where the distance between points in the feature space is not 
highly correlated to test scores. The non-convexity in the feature space meant that this approach 
may not optimally converge to a solution as designed. 

3.2.3.5.3 Genetic Algorithms. We next investigated genetic algorithms (GA) as a heuristic 
approach to generate points that optimally induce model drift. GAs are another evolutionary 
approach that attempt to mimic the process of natural selection. GAs begin with an initial 
population of potential solutions, stochastically selects the most fit members, combines these 
members in a process known as crossover, and introduces random mutations. This process of 
selection, crossover, and mutation is repeated iteratively for a set number of iterations or until an 
acceptable solution has been found.  We chose GAs because they are a very widely used heuristic 
method and have proven success in a variety of optimization domains.  Additionally, they appear 
to be less specialized than PSO, meaning that while GAs may be less suitable for some 
applications, they are more effective for a wider variety of problems.  Therefore, they allow us a 
more universal approach, applicable to a variety of ML algorithms.  During our experimentation, 
we implemented our own version of a genetic algorithm in Java.  We chose to use fitness 
proportionate selection (roulette wheel selection), two point crossover, and random mutations.  We 
also chose to ensure that the fit member from any population is guaranteed to make it to the next 
generation unchanged. We experimented with a number of different mutation rates and crossover 
rates and different mutation methods such as decreasing the mutation rate as the number of 
iterations increases and decreasing the mutation range as the number of iterations increases.  
Additionally, we developed and experimented with custom mutation and crossover techniques that 
allowed our population to be made up of members of varying lengths. 

One of the major drawbacks of GAs is the computational time required to repeatedly evaluate the 
fitness functions.  Particularly in our case, our chosen fitness function requires retraining ML 
models, which is an intensive process. In an attempt to mitigate this, we investigated Adaptive 
Fuzzy Fitness Granulation (AFFG).  AFFG maintains a list of fuzzy granules, or groups of similar 
points whose fitnesses have already been computed.  If an individual is sufficiently similar to one 
of these granules according to a fuzzy similarity analysis, then it is simply assigned the fitness of 
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the granule.  Otherwise, its fitness is calculated and a new granule is created.  This cuts down on 
the number of explicit fitness calculations that must be processed.  During our experimentation, 
we implemented AFFG in Java and incorporated it into our GA code. 

3.2.3.5.4 Nelder-Mead Method. We additionally investigated the Nelder-Mead method as a 
heuristic approach for generating points that optimally induce model drift.  In n dimensions, the 
Nelder-Mead method creates a simplex arranged of n+1 candidate solution points.  It then 
iteratively replaces the point that has the lowest fitness with a point reflected through the centroid 
of the simplex.  It also either expands or contracts along this line to either stretch of shrink the 
search space depending on the fitness of this reflected point.  This has the effect of replacing 
“lower” points with “higher” points, moving the simplex “uphill” towards the best solution and 
contracting at the top rather than sliding back down.  This algorithm was chosen because it is 
another popular and widely used technique.  Also, it tends to require fewer fitness calculations 
than a GA, greatly decreasing the amount of required computation.  During our experimentation, 
we implemented the Nelder-Mead method in Java. We also ran experiments utilizing the Apache 
Commons implementation of the algorithm. It was noted, however, that the Nelder-Mead 
algorithm tended to have similar weaknesses to PSO. In a non-convex feature space, the algorithm 
may not converge to an optimal solution. 

3.2.3.5.5 Simulated Annealing. As the other heuristic optimization methods that we explored did 
not produce as optimal of solutions as we believed were possible, we next investigated Simulated 
Annealing (SA).  SA choses an initial state (candidate solution), then iteratively selects a 
neighboring state and probabilistically decides to remain in the current state or move to the new 
state.  This acceptance probability is based on the fitness score of the two states and the current 
temperature. The temperature decreases over the iterations, causing the algorithm to be less likely 
to select states with lower fitnesses in later iterations. In the early iterations, however, SA may 
select a state with a lower fitness in order to avoid local maximums. During our experimentation, 
we first used JAnnealer, an open source Java implementation of SA, but it did not offer all of the 
functionality that we required. Instead, we next used the AIMA3e library, an open-source Java 
library containing various optimization algorithms. In order to improve its implementation of SA, 
we modified it so that during optimization iterations, the best solution encountered was remember 
throughout, and returned at the end. 

3.2.4 Monte Carlo Simulator. As mentioned above, we designed and developed a Java API and 
prototype GUI that were used to implement our framework and methodology and facilitate 
experimental runs.  We chose to design our framework around Monte Carlo simulations, which is 
an experimental method that relies on repeated random sampling. This helps eliminate data 
specific results by finding averages across multiple runs, decreasing the variance in our results. To 
this end, an API was created, described in the next section, with interfaces that allow for simply 
running Monte Carlo experiments and adapting new algorithms and data sources for testing. 

The framework allows for experiments to be run to identify precisely what effort an adversary 
would need to expend in order to force a misclassification on the selected test point through model 
drift created by the introduction of crafted insertion data into the training set. These experiments 
may be repeated for varying training set sizes, different percentages of control the adversary has 
over the retrain data, and varying algorithm-specific parameter values. For each configuration, 
multiple iterations are run with randomly sampled data from the selected data source and the results 
are aggregated and placed into graphs for further analysis. This provides the user with an overall 
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picture of the resistance of the algorithm to adversarial drift and may be used to compare 
algorithms. 

3.2.4.1 Java API. The API was designed to be flexible, allowing us to test various functionalities 
using Monte Carlo simulations with a variety of machine learning algorithms and data sources.  
The API was written primarily in Java due to its object oriented design, its abundance of existing 
libraries, and the team’s skill set.   

An abstract class, Algorithm, was created which contained the majority of the functionality 
required to implement a machine learning algorithm and begin testing with it.  To implement an 
algorithm, the user simply must extend this class and implement the train, test, and classify 
methods.  The train method receives a training set as a parameter in the form of a List of Lists of 
Numbers, which it will then use to create its learning models. The test method receives a single 
test point in the form of a List of Numbers, which it will then test against the learned models, and 
return a numerical test score.  The classify method receives a single test point which it will compare 
against the learned models, and return either a 0 or a 1 indicating whether or not the point is 
anomalous.  During our experiments, classes were created that extended this Algorithm class to 
implement each of the algorithms identified in section 3.2.1 Algorithm Selection as well as the 
IDSs SuStorID, McPAD, and HMMPayl. 

An abstract class, DataStorage, was created to handle the functionality of storing data and making 
it available to the algorithms for training and testing.  To implement a DataStorage, a user must 
extend the abstract class and implement the getRandomPoints and getAllPoints methods.  The 
getRandomPoints method returns a given number of points randomly selected from the data source 
in the form of a List of Lists of Numbers.  Its purpose is to allow for repeated Monte Carlo 
simulations which call for randomly selected training data sets.  The getAllPoints method returns 
all of the points from the training set in the form of a List of Lists of Numbers and is designed for 
instances where randomness is not desired.  During our experimentation, we implemented a 
number of different DataStorages. Table 6 details the different data sources that we were able to 
pull from using our DataStorage implementations. 

Table 6: Data sources implemented and incorporated into Java API 

Data Source Explanation 

Normal Distribution Generates points of a given dimensionality containing numbers sampled randomly from 
a Gaussian distribution with a given mean and standard distribution. 

Character Delimited Files Loads a given file containing points (one per line) made up of numbers separated by a 
given delimiter. Capable of returning random points from the file or all of them. 

Strings From File 
Loads a given file containing strings (one per line) which it converts to Lists of Numbers 
based on the ASCII values of the characters. Capable of returning random points from 
the file or all of them. 

SQLite Database 

Pulls data from a given SQLite database using JDBC. Assumes the database contains a 
table which has two columns, an ‘id’ column which contains incrementing row numbers 
beginning at 1, and another column which contains data points which are numerical 
values separated by a given delimiter. Capable of returning random points from the 
database or all of them. 

PCAP Files 
Loads a given PCAP file and extracts the payload from each packet as a byte string. 
Uses these byte strings, represented as Lists of Numbers, as the points. Capable of 
returning random points or all of them. 
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In order to run a variety of model drift experiments, we implemented a MonteCarloSimulator class 
which requires only an Algorithm and a DataStorage. This class offered multiple functionalities 
which are summarized in Table 7. 

Table 7: Functionalities offered by MonteCarloSimulator class in Java API 

Method Explanation Purpose 

Train and Test 
For a given number of iterations: Train the algorithm using 
a randomly generated training set from the data storage, 
and then test a given test point against the resulting 
classifier. 

Determine on average the test score 
of a particular point. Tests the 
consistency of the classifier when 
trained on varying training sets. 

Train and Retrain 

For a given number of iterations: Train the algorithm using 
a randomly generated training set from the data storage, 
and test a given test point against the resulting classifier. 
Then add given insertion points to the training set, retrain, 
and recalculate the score of the test point. Also has option 
to add additional random points during retraining. 

Tests the model drift effects of the 
given insertion points. 

Additive Retraining 

For a given number of iterations: Train the algorithm using 
a randomly generated training set from the data storage, 
and test a given test point against the resulting classifier. 
Then add one of the given insertion points, retrain, and test 
the test point again. Iteratively repeat, adding each 
insertion point to the training set. Record score of test point 
after each insertion point is cumulatively added to the 
training set. Also has option to add additional random 
points during retraining iterations.  Also has the option to 
calculate the ‘optimal’ insertion points rather than use a 
given list. 

Tests the model drift effects of the 
given insertion points over time.  
Simulates the low and slow approach 
that would cause an anomalous point 
to gradually appear normal. 

Add Optimal Until 
Misclassification 

For the given number of iterations: Train the algorithm 
using a randomly generated training set from the data 
storage. Then calculate the ‘optimal’ insertion point, insert 
it into the training set, retrain, and test the test point.  
Repeat this until the test point has a score such that it 
would not be classified as anomalous. 

Determines the amount of effort an 
adversary would need to put forth in 
order to force a misclassification on a 
given test point. Gives a 
measurement of how secure the 
classifier is to model drift. 

The API also allowed for the simple inclusion of multiple optimization algorithms, which are used 
to calculate the point which induces the greatest amount of model drift in the direction of the test 
point when added to the training set (Figure 1).  The optimization approaches detailed in section 
3.2.6. 

3.2.4.2 Optimization Selection were each implemented, and generally required only an Algorithm, 
a DataStorage, and any optimization algorithm specific parameters.  Figure 12 shows a segment 
of the class diagram for the API and gives an overview of the class structure. 
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Figure 12: Segment of Java API class diagram 

3.2.4.3 GUI. A prototype GUI was developed in Java in order to expedite experimental runs using 
our API.  The GUI was designed to support all of the functionality of the MonteCarloSimulator 
class while allowing the user to quickly customize all of the experiment parameters.  The GUI 
displays a panel which allows the user to select an implemented ML algorithm and a data source 
and insert any algorithm or data source specific parameters.  Another panel exists which allows 
the user to enter or load specific test points and insertion points to use during testing.  A third panel 
allows the user to run any of the functions listed in Table 7 and choose specific parameters such 
as the number of iterations to run and the size of the training set.  It also has an option to bring up 
a graphical display of the results. A collapsible panel at the bottom displays experimental progress 
and textual output. The GUI supports the ability to save/load experimental setups, so that 
experiments can later be loaded and modified or rerun/validated. Additionally, experimental 
results may be saved to a file in CSV format.  Figure 13 displays a screenshot of the GUI. 

 



Approved for Public Release; Distribution Unlimited. 
28 

 

Figure 13: Screenshot of Monte Carlo Simulator GUI 

Figure 14 displays an example of the graphical results provided by the GUI at the completion of 
an experimental run. Multiple different views of the data are available including histograms, box 
and whisker plots, and scatter plots which help the user quickly understand the results of the Monte 
Carlo iterations. 

 

 

Figure 14: Screenshot of visual display of experimental results provided by Monte Carlo 
Simulator GUI 



Approved for Public Release; Distribution Unlimited. 
29 

In the Appendices, we have included a User’s Guide to aid in using the Monte Carlo Simulator 
GUI for running experiments. Instructions for setting up the virtual machine and accessing the 
simulator are in a test file included on the DVD-R with the code itself. Start by opening the file 
titled “README.txt.” The User’s Guide provides plenty of additional screen shots and 
information to run the Monte Carlo Simulator. 

3.2.5 Model Drift Experiments. In order to test the validity of our proposed approach for 
analyzing the resistance of an IDS’s machine learning algorithms to induced model drift, a number 
of experimental runs were performed. This section describes the experimental procedure used to 
test each of the algorithms and IDSs described in sections 3.2.1 Algorithm Selection and 3.2.2 
Real World ML-IDS as well as the experimental results. We endeavored to demonstrate through 
repetition and careful experimentation precisely how susceptible each algorithm is to model drift 
induced by an adversary and to note factors that may help to reduce this weakness in each of the 
algorithms. As stated earlier, we focused on targeted causative integrity attacks as defined in the 
taxonomy developed by Barreno et al (Table 1). In this scenario, an adversary inserts specially 
crafted points into the training set in order to drift the learning models so that a specific point 
which previously appeared anomalous becomes classified as innocuous. While exploring these 
weaknesses in the ML models, we also sought to explicitly quantify their susceptibility. 

Two sets of experiments were run using the Monte Carlo simulation framework. In the first set, 
the ML algorithms were used to classify color values as either normal or anomalous based on their 
Red/Green/Blue (RGB) values. The RGB value of a color is the extent of red, green, and blue the 
color contains, represented as integer values between 0 and 255 inclusive. Therefore each training 
point is a vector of integers of length three. The training sets used for these experiments were 
sampled from a Gaussian distribution with a mean of 127 and a standard deviation of 30. We then 
selected colors that the selected classifiers identified as anomalous, and measured the effort 
required by an adversary to force misclassifications using the outlined approach. While this data 
set is overly simplistic, it allows us to easily illustrate the above described concepts and to identify 
general trends. This also gave us relative ease of processing while providing sufficient variety to 
the random data sets produced for testing with the Monte Carlo simulations. This approach allowed 
us to test the algorithms isolated from their associated IDSs to more purely test the mathematical 
aspect of the ML algorithms separate from any potential implementation issues that may exist in 
the IDSs. 

The second set of experiments was designed to be more realistic, testing the resiliency of the actual 
IDS implementations to adversarial drift using network data. In initial experiments, we generated 
our own generic network traffic of the sort required for the IDSs covered. However, for the 
majority of the experimental runs, we utilized the DARPA’99 dataset to train the anomaly 
detection models. Although the DARPA’99 dataset is outdated and has been widely criticized, it 
is still highly appropriate and valuable for our needs. It is the most common public dataset used to 
baseline ML-IDS and lends to the repeatability of our experiments. Additionally, the largest 
complaint against DARPA’99 is that it is no longer suitable for measuring the accuracy of an IDS 
and its ability to detect intrusions. However, this is not the context for which we were using it. Our 
goal was to find appropriately formatted network data and some attack point that is flagged as 
anomalous by the classifier trained on this data. This approach does not consider the overall 
accuracy of the classifier, but rather its ability to continue making an accurate prediction despite 
adversarial attempts to induce model drift. Initially, we used a real HTTP attack dataset provided 
by the authors of McPAD on their project website as our test points on which to force 
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misclassifications. We later inspected an alternate attack dataset (available at 
https://www.mediafire.com/?a49l965nlayad#7vz9n6749t1ej) which offered more recent and a 
wider variety of attacks. 

3.2.5.1 Color Experiments. In order to illustrate the above concepts and concerns, we conducted 
experiments utilizing an anomaly detector designed to classify color values as either normal or 
anomalous based on their RGB values. Each training point's red, green, and blue values were 
sampled from a Gaussian distribution with a mean of 127 and a standard deviation of 30. Figure 
15 displays 2000 colors randomly sampled from this distribution, plotted on the Cartesian axes. 
The X axis represents the red value, the Y axis represents the green value, and the Z axis represents 
the blue value. 

 

 

Figure 15: Colors randomly sampled from a Gaussian distribution 

A number of experiments were run using the color RGB data and the identified anomaly detection 
ML algorithms.  For initial tests, we selected two colors that were consistently classified as 
anomalous by each of the algorithms. The colors were green-yellow and goldenrod which had 
RGB values of [173, 255, 47] and [255,193,37] respectively.  Then, for each algorithm, we 
determined the effort, as defined in Figure 1, required by an adversary to force a misclassification 
on the two selected target points. This was accomplished by selecting a random training set, 
training the algorithm, and then iteratively generating an insertion point, adding it to the training 
set, retraining, and measuring the new test score of the target point until the target is no longer 
classified as anomalous. The number of insertion points required to force the misclassification is 
recorded and defined as the effort required by the adversary. We varied the size of the training set 
and for each training set size ran multiple iterations with randomized data. In initial experiments, 
we investigated HMMs and used Particle Swarm Optimization to generate the insertion points. 
The results of these experiments can be found in our paper written for SPIE DSS entitled 
“Evaluating data distribution and drift vulnerabilities of machine learning algorithms in secure and 
adversarial environments,” which is included in the appendix.  

During this experiment, we also evaluated the correlation between training set size and the 
adversary’s ability to alter an anomalous point’s probability with a single insertion point. For each 
training set, the HMM was trained and the anomalous point’s probability score was determined. 
Then, an insertion point was generated using PSO, the point was added to the training set, the 

https://www.mediafire.com/?a49l965nlayad#7vz9n6749t1ej
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HMM was retrained, the anomalous point’s new probability score was computed, and the 
difference between the two probability scores was calculated. The effect that an adversary can 
have on the probability score of an anomalous point using a single insertion point had an almost 
perfect inverse relationship with the number of points in the training set. This negative correlation 
implies that increasing the size of the training set may mitigate some of the risk of a targeted 
causative attack against an ML algorithm. However, the time and resource cost of training an ML 
algorithm increases as the number of training points increases, and at some point, this cost must 
be weighed against the potential impact of an adversary. The results of this experiment are also 
located in our paper written for SPIE DSS. 

In later experiments, we investigated the effort required by an adversary to force model drift for 
each of the identified ML algorithms using the algorithm-specific optimization methods described 
in section 3.2.8.  
3.2.5.2 Optimization Selection. We varied the size of the training set and for each training set size 
ran multiple iterations with randomized data. The results of these experiments are summarized in 
Figure 16. The y-axis on the plots has been scaled logarithmically due to the large disparity 
between the algorithms. However, it should be noted that the relationship between the training set 
size and effort required by the adversary was in fact linear. These experiments allow for a simple 
comparison between algorithms. For the purpose of detecting anomalous colors, SVMs appear to 
be significantly more susceptible to adversarial drift than a simple centroid anomaly detector. This 
also shows the advantage of using a large training dataset for defending against adversarial drift, 
which must be weighed against the increased cost of acquiring data and training. More information 
about these experiments can be found in our paper written for IEEE CISDA entitled “Evaluation 
Model Drift in Machine Learning Algorithm,” which is included in the appendix.   
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Figure 16: Effort required by an adversary to cause misclassifications of selected 
anomalous color values using various ML algorithms 

In the next experiment, for a fixed training set size, we tested each algorithm with a wide variety 
of different colors to determine the number of points necessary for the adversary to insert in order 
to force a misclassification on each. This value was then compared against the initial test scores to 
gain a better understanding of the relationship between the extent to which a point is anomalous 
and the model’s resistance to adversarial drift towards the point. The results of this experiment are 
summarized in our paper written for IEEE CISDA. The centroid anomaly detector and HMM both 
show a clear correlation between anomaly score and effort required by the adversary. The centroid 
anomaly detector shows a positive correlation because its test score represents a distance from 
normalcy, while HMM shows a negative correlation because its test score represents a probability 
of being benign. The relationship for the SVM is not as clear due to many of the points’ initial test 
scores rounding to zero, but there appears to be a loosely negative correlation. 

Additionally, we ran experiments using varying configurations of the centroid anomaly detector. 
The results are detailed in the IEEE CISDA paper. These results give a clear indication of which 
configuration causes the most effort for the adversary and is therefore the most secure against 
induced model drift. 

In further experiments, our goal was to compare the performance and effectiveness of the various 
optimization algorithms developed for generating insertion points. We ran experimental iterations 
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to test the various algorithms discussed in section 3.2.1 Algorithm Selection and the optimization 
approaches discussed in section 3.2.9. 

3.2.5.3 Optimization Selection. We selected a training set of 1000 three-dimension points 
randomly selected from a normal distribution with mean 127 and a standard distribution of 30 to 
use for each experimental iteration. We also chose to use green-yellow [173, 255, 47] as our 
anomalous test point. Then, for each ML algorithm and each optimal point generation approach, 
we calculated the number of innocuous insertion points required to successfully drift the ML 
models to allow the test point and the amount of time required for the calculations.  For the genetic 
algorithm and the genetic algorithm with AFFG, we used a mutation rate of 5%, a population size 
of 50, and an iteration count of 500. For the Nelder-Mead optimizer, we chose to run the algorithm 
for 50 iterations, and the simulated annealing algorithm ran for a maximum of 1000 iterations. The 
results of these experiments are summarized in Table 8. 

Table 8: Performance comparison of optimal insertion point generation approaches 

Centroid Anomaly Detector 

Optimization Algorithm Number of Required 
Insertion Points Time (Seconds) Time Per Point 

(Seconds) 
Centroid Anomaly Optimizer 545 0.546 0.001001835 
Genetic Algorithm 683 11474.975 16.80084187 
AFFG Genetic Algorithm 604 9759.453 16.15803477 
Nelder-Mead 839 23.085 0.027514899 
Simulated Annealing 578 590.008 1.020775087 

Hidden Markov Model 

Optimization Algorithm Number of Required 
Insertion Points Time (Seconds) Time Per Point 

(Seconds) 
Centroid Anomaly Optimizer 6 0.297 0.0495 
Genetic Algorithm 6 2551.304 425.2173333 
AFFG Genetic Algorithm 6 292.221 48.7035 
Nelder-Mead 7 25.406 3.629428571 
Simulated Annealing 10 1552.281 155.2281 

K-Means Anomaly Detector 

Optimization Algorithm Number of Required 
Insertion Points Time (Seconds) Time Per Point 

(Seconds) 
K-Means Anomaly Optimizer 13 0.561 0.043153846 
Genetic Algorithm 161 30549.549 189.7487516 
AFFG Genetic Algorithm 360 116828.75 324.5243056 
Nelder-Mead 180 1058.763 5.882016667 
Simulated Annealing 13 981.145 75.47269231 

3.2.6 PCap Experiments. The primary purpose of these initial color RGB experiments was to test 
the legitimacy of the framework’s capabilities and to discover baseline patterns. The next step was 
to validate these results using the identified open-source IDSs with actual network data. 
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We began initial experiments with SuStorID in an effort to induce drift on its HMM models. We 
utilized the technologies listed in section 3.2.9.1.1. 

3.2.6.1 Technologies Used to automatically generate requests to our simple test web application 
that was protected by SuStorID.  For our initial test point, we selected a value that when entered 
into the text field on the sample HTML page would be classified as an anomaly by SuStorID’s 
models trained with our generated traffic.  Although this test point did not represent a genuine 
attack against the web app, it suited our purpose for initial testing as it was an anomaly that could 
be used as the target for model drift. While we were able to demonstrate drift manually during 
testing, it soon became apparent that SuStorID itself was much too unreliable for automated 
testing. The system would often crash and need to be restarted during the training phase. This made 
it very ill-suited for automated iterative testing which relied upon repetitive retraining.  For this 
reason, few results are available and we instead chose to focus on a different IDS which utilizes 
HMMs, HMMPayl. 

HMMPayl required training data from PCap files in order to create its learning models. As 
mentioned above, we chose to use the DARPA ‘99 data set as our source of training data. In our 
literature review, we found the DARPA ‘99 data set to be a very common data set used by 
researchers to develop and test the their IDSs and thus was a convenient source of network traffic 
to use in our own testing. It allowed us to verify their results to an extent and to compare our results 
to theirs in part as well. For our test points, we chose to use the attack data provided by the authors 
of McPAD on their project website.  The data set consisted of a number of PCap files that each 
represented an HTTP attack. This provided us with genuine attacks that we could test the IDS 
against. For an initial test, we selected an intrusion point from the identified attack data set that 
was consistently flagged by HMMPayl when trained with data from the DARPA’99 dataset. This 
attack point actually consisted of seven packet payloads representing a chunked encoding transfer 
heap overflow against Microsoft IIS. The HMM-specific approach for generating insertion points 
was applied until each of the seven payloads went undetected by the IDS. This was repeated 
multiple times with randomly selected normal traffic for varying training set sizes. The results of 
this experiment can be found in our paper written for IEEE CISDA. A linear relationship between 
the training set size and the number of insertion points required by the adversary became apparent. 
The slope of the best-fit line revealed that on average the adversary need only insert 0.486% of the 
training set size to successfully induce model drift while remaining undetected. 

Similar to the color experiments, we next selected every individual packet payload from the attack 
dataset. For a fixed training set size, we determined the number of insertion points required by the 
adversary in order to create a misclassification on each payload. We again used the HMM-specific 
approach for generating insertion points. The required number of points is compared against the 
initial test score of the payloads to give the security administrator an overall feel for the resiliency 
of the system. The results of this experiment are summarized in our paper written for IEEE CISDA. 
For the selected attack points there is a loosely negative correlation between the initial test score 
and the required number of insertion points. It can also be seen that the adversary needs to insert 
no more than 0.1% of the training set in order to create a misclassification on a single payload. 

A more careful examination of the attack data set revealed that the payloads detected by the IDS 
were very homogenous. Many of the payloads were similar to each other and consisted primarily 
of the same byte pattern, two bytes repeating iteratively.  For this reason we identified an additional 
attack data set which contained more recent data and offered a greater variety of payloads.  Several 
PCap files were downloaded from this source (available at 
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https://www.mediafire.com/?a49l965nlayad#7vz9n6749t1ej) and were used as our test data set. 
For a fixed training set size of 500, we determined the number of insertion points required by the 
adversary in order to create a misclassification on each payload from the new test data set of 
attacks. We again used the HMM-specific approach for generating optimal points. Figure 17 
summarizes the results of this experiment. At a maximum, 254 insertion points, or 50.8% of the 
training set, were required. However, for a number of payloads, only 1 insertion point was required 
to cause the misclassification. On average, about 36.5 insertion points (7.3% of the training set) 
were required for each payload, with a median value of 21 insertion points (4.2% of the training 
set). 

 

Figure 17: Effort required by an adversary to cause HMMPayl to misclassify selected 
attack payloads 

We additionally attempted to run similar experiments using McPAD as our IDS in an effort to drift 
its SVM models. It soon became apparent, however, that the SVM-specific approach developed 
for generating optimal points that was successful during the RGB experiments did not extrapolate 
well to non-Gaussian network data. Using this method, we were unable to induce the desired drift 
effects. We therefore attempted each of the universal optimization methods described in section 
3.2.3.5 Universal Optimization. Again, we were met with little success. Often we were able to 
increase the score of the test point, but the threshold would also increase at an equal or greater rate, 
causing the point to remain anomalous. Unfortunately, this was not resolved, and it appears as 
though the methods utilized by McPAD are relatively secure to adversarial drift. Even when 
removing McPAD’s advantage of using an ensemble and instead using a single SVM model, we 
had limited success. 

3.2.7 HPC Experiment. As mentioned above, one of the major drawbacks of our chosen approach 
for evaluating ML systems and for generating ‘optimal’ insertion points is the computational time 
requirement.  Our method for measuring the security of an ML system against model drift requires 
iteratively adding points to the training set and retraining. This retraining of the learning models 
may be an expensive process, especially for larger data sets.  Additionally, the fitness function of 
our heuristic-based optimization approaches for generating insertion points also requires retraining 

https://www.mediafire.com/?a49l965nlayad#7vz9n6749t1ej
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the ML models.  In an effort to mitigate this limitation and to greatly expedite our experimental 
runs, we acquired access to the High Performance Computer (HPC) Condor cluster available to 
AFRL researchers. 

In order to take advantage of the large amount of processing power, available memory, and 
multiple nodes on the HPC, a distributed version of the Monte Carlo Simulator Java API was 
developed. A class was created which was responsible for tasks such as training the ML algorithm 
models, testing given test points, and generating ‘optimal’ insertion points.  Then, a server class 
was created which creates an RMI registry and binds an instance of the other class to the registry.  
This server would be started and run on each of the available nodes on the HPC, waiting for 
requests to train/test an algorithm or generate optimal points.  The MonteCarloSimulator class was 
then altered so that iterations of the current task would be run simultaneously on the remote servers, 
communicating through remote method invocation (RMI). Each of the functionalities listed in 
Table 7 was modified to be able to run in a distributed manner as such.  Additionally, to take 
advantage of the processing power and memory of each node, the methods to be carried out on the 
servers were also multi-threaded, so that multiple iterations could be run concurrently on each.  
This meant that n*t iterations could be run simultaneously, where n is the number of available 
nodes, and t is the number of threads to run on each.  This obviously decreased the time 
requirement for experimental runs. 

Additionally, effort was made to increase the speed at which optimal points are generated through 
heuristic algorithm-independent methods.  We chose to work with genetic algorithms as they 
initially appeared to produce the best results when given time to run to completion. Also, genetic 
algorithms are easily distributable.  The fitness function calculation is the most expensive process 
and occurs for each member of the population during each generation.  However, this is an 
independent process, so the fitness values of all members of a given population may be calculated 
concurrently.  To implement this, we developed a class which is responsible only for calculating 
fitness values. Then, a server class was developed which creates an RMI registry and binds an 
instance of the fitness calculation class to the registry.  This server would be started and run on 
each of the available nodes on the HPC, waiting for requests to calculate the fitness value for a 
given test point.  We then altered the genetic optimizer class so that fitness calculations for the 
members of the current population are run simultaneously on the remote servers, communicating 
through RMI.  The fitness calculation class also allowed for multi-threading, enabling multiple 
fitness values to be calculated concurrently on a single node, taking advantage of the processing 
power and memory on the nodes. This meant that the fitness of n*t points could be calculated 
simultaneously during each generation. To further speed up calculations, the Adaptive Fuzzy 
Fitness Granulation method described in section 3.2.3.5.3 was implemented into the distributed 
genetic algorithm. 

A number of experiments were run utilizing the distributed implementation of the Monte Carlo 
Simulator on the HPC. In order to compare the performance of the genetic algorithm on the HPC 
versus on a standalone machine, a simple test was run to generate optimal points that would drift 
an HMM to accept an anomalous point.  Ten-dimensional Gaussian training data was used with a 
training set size of 300 points, and the genetic algorithm used a population size of 50 and ran for 
500 iterations. When running 5 threads concurrently on a standalone laptop with a quad-core 2.70 
GHz processor and 16.0 GB of RAM, it took about 397 seconds on average to generate each 
optimal insertion point.  When running on the HPC with 7 nodes and 5 threads running 
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concurrently on each, it took about 116 seconds on average to generate each optimal insertion 
point.  With just 7 nodes, the HPC allowed points to be generated over three times as quickly. 

A similar experiment was attempted using HMMPayl and network training data from the DARPA 
’99 data set.  However, using just 200 packets for training and a population size of 100 for 100 
generations, the genetic algorithm took roughly 26 hours to generate just 5 insertion points.  This 
was deemed unreasonably long, and alternate optimization methods were investigated at this point. 

Although the HPC did not improve the speed of the algorithm-independent optimization methods 
to quite the extent that we had initially hoped, it still proved to be useful for decreasing the time 
requirements for experimental runs.  Specifically, when running tests using the faster algorithm-
specific optimization methods, many points could be tested simultaneously. Also, more iterations 
could be run as each one processed more quickly, leading to less variance in results. 

3.2.8 ICS and SCADA. Having been granted access to Industrial Control System (ICS) and 
Supervisory Control And Data Acquisition (SCADA) specific networking hardware, we produced 
an experiment plan for proposed work using our methodology in the context of studying and 
assessing ICS and SCADA security systems which use learning systems to handle any portion of 
the network threat identification.  Details are available at a higher security level and are not 
included in this document. 

4.0 CONCLUSIONS 
As a result of our research, we have created a methodology to explore the susceptibility of 
algorithms used in research-based ML-IDS to induced data drift while they are operating in an 
adversarial environment. The methodology was developed while examining and subsequently 
testing several anomaly detectors to establish the baseline approach and results. We further 
developed and validated the methodology through analysis of additional algorithms implemented 
in an ML-IDS. We identified potential heuristics to create insertion points in order to induce data 
drift. We then ran a series of experiments to thoroughly exercise the identified ML-IDSs in order 
to explore their susceptibility to induced data drift while operating in our tightly controlled 
adversarial environment. We progressed from the overly-simplified RGB values used to establish 
baseline results to using real-world network traffic data. Our initial experiments demonstrate the 
type of valuable information that a system administrator may gain through the use of our 
framework, and preliminary results indicate that the ML algorithms utilized by ML-IDS are indeed 
susceptible to induced data drift while operating in an adversarial environment. 

4.1 Recommendations 
While developing future ML-based systems that are to be deployed in adversarial environments, 
it is essential that the security of the learning models is considered. We have demonstrated that in 
many cases it is a trivial matter for an adversary to force a misclassification of an intrusive point 
simply through the addition of innocuous points into the training corpus.  For this reason, in 
addition to functional and integration testing, it is vital that the susceptibility of these systems to 
induced data drift is also thoroughly tested in order to ensure that the systems are as hardened as 
possible to vulnerabilities. Our framework and methodology provide an ample starting point for 
testing and measuring the security of ML models. 

The suitability of a ML algorithm is often determined by calculating the accuracy, precision, or 
recall during a validation phase. Researchers typically make the assumption that data distributions 
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will remain the same at test time as during validation.  However, this stationary assumption is often 
violated, particularly in dynamic environments such as network security. This issue is only 
exasperated by the presence of an adversary.  In order to mitigate this, researchers must develop 
their ML algorithms and models with security in mind from the offset.  This includes choosing 
methods that are robust to noise and avoid overfitting to outliers. This limits the detrimental effects 
that an adversary may inflict through the addition of insertion points and additionally allows the 
model to generalize better to new data. Researchers should also consider ensemble methods, or 
using the result of multiple learning algorithms combined to make a prediction. This has been 
shown to not only improve overall predictive performance, but would also increase the amount of 
work required by the adversary as they would be forced to induce drift on multiple models. 

Developers of ML-based systems should also be sure to limit the amount of information available 
to an adversary. This includes ensuring that information about the training set is secure so the 
adversary is not able to determine data distributions or other information that would allow them to 
infer details of the ML models. Also, information about the type of algorithms and models utilized 
should be kept secret as it would better allow the adversary to develop a targeted drift strategy. 
During run-time, the resulting score of testing points against the trained models should not be made 
available to the adversary. The test score shows them the exact progress and effectiveness of their 
drift attack, enabling them to further tailor and improve their strategy. 

As mentioned above, ML-IDS operate in a dynamic environment in which the relevant factors and 
standards of normalcy are constantly changing. Therefore, periodic retraining of the anomaly 
detection models will remain an important aspect to ensure that the models remain current and 
effective. However, we have shown in our research that this retraining process creates an 
opportunity for an adversary to insert traffic and negatively impact the learning models. 
Developers must take precautions to limit the effects of the adversary during these necessary 
retrain periods. Retraining should not be done at regular intervals as this period may easily become 
known to the adversary.  Additionally, not every point received should be included in the new 
training set to update the models.  An effective method may be to randomly select points from a 
pool of potential points.  The adversary would then have no guarantee that their insertion points 
are included, and would increase their required effort. Also, points considered for retraining should 
be tested against the existing models to ensure that points classified as obviously anomalous or 
malicious are not included. 

Although we have observed that ML-based systems are indeed susceptible to induced model drift, 
it is still our belief that ML-IDS is a promising field of research and should continue to be explored. 
Traditional signature-based IDSs generally fail to detect zero-day and polymorphic attacks.  ML-
IDSs aim to solve this issue by detecting general patterns indicative of an attack rather than specific 
signatures, and research has shown a considerable amount of success in this regard.  Current ML-
IDSs are not perfect though, and are not yet widely deployed, leaving much room for research and 
improvement.  As the field matures, however, we believe that these ML approaches will become 
pervasive and important aspects of cyber security. Specifically, we have observed that anomaly 
detection algorithms are more commonly developed and deployed due to their lack of reliance on 
labeled training data, which is often difficult and expensive to obtain. 

We also recommend that any ML-IDS is deployed in tandem with a signature-based IDS. While 
signature-based IDSs are ineffective at detecting unknown attacks, they are still very valuable for 
detecting attacks for which a known signature exists. Due to the generalization of the models 
created by ML-IDS, there will inevitably be a non-negligible number of false negatives. These un-
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flagged attacks may often be caught by a signature detection method.  Additionally, this makes the 
system more secure as those attacks with a known signature are impervious to the effects of model 
drift. 

When generating insertion points to test a ML-based system’s resistance to induced model drift, 
we recommend using a specialized algorithm-specific method over a universal optimization 
approach. Our algorithm-specific approaches were much faster as they did not require repeated 
retraining of the ML models. This becomes particularly relevant as the training set size increases.  
They also tended to be more effective, as less points generated using this method were required to 
force misclassifications. The drawback to this approach, of course, is that a prior understanding of 
the ML algorithms is required, which may not always be available.  In this case, the universal 
approaches are relatively effective, but involve a much greater time commitment. 

4.2 Future Research 
There are many interesting and novel directions in which the research may progress from this point 
beyond just further data collection and analysis. Future research should extend to include: 

• Exploring algorithms not yet covered which have been used or may be used by other ML-
IDS. 

• Testing alternative libraries that implement included/excluded algorithms to explore 
sensitivities related to implementations across identical algorithms. 

• Investigating additional data types that are considered by IDSs, both commercial and in 
research, such as trace and log file parsers, executable analyzers, and even multi-session 
analyzers. 

• Exploring optimization methods to create an improved method for generating insertion 
points that is universal while also being feasible time and computational power-wise. 

• Investigating additional sections of the ML attack taxonomy including evasion attacks 
which do not require influence over the training set. 

• Studying defensive remediation that can be used to mitigate the vulnerabilities observed as 
a part of this work. 

• Investigating ML-based IDS in ICS/SCADA networks to provide suggestions to make 
these systems more resilient and robust. 

• Creating a Metasploit module for our methodology to be used by our cyber forces to be 
used for pen testing Department of Defense resources to further harden our networks for 
improved network defense. 

• Abstracting the research to create a general methodology for measuring the security and 
suitability of ML algorithms in a domain-independent context. 

Additionally, future research should investigate the drift susceptibility of the above systems after 
reducing the assumptions and prior knowledge/access granted to an adversary.  As mentioned, this 
research assumed a worst-case scenario from the defender’s perspective and limiting the 
assumptions would give a more realistic picture of the true security of the system. This includes 
removing the adversary’s knowledge of the ML algorithm implemented, the decision boundaries, 
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and the training set, which would then require additional careful probing by the adversary in order 
to ascertain this information and maintain con. 

Mitigating the identified weaknesses of the ML systems is an important topic of future research. 
Barreno et al. describe various defensive measures which may be utilized to harden an ML system. 
These techniques include: 

• Reject on negative impact (RONI) defense – measures effects of each training instance and 
rejects points which are seen to have a negative impact on classification. 

• Robust algorithms – based upon Robust Statistics. The goal is to create a procedure which 
will limit the impact of deviant points by accounting for qualitative robustness, the 
breakdown point, and the influence function of the procedure. 

• Online learning with experts – uses a set of classifiers each designed to provide a different 
security property and predictions/advice for training. 

• Hide training data – if access to the training data is denied, an adversary is unable to 
determine the exact decision boundaries of the models used by the ML so as to analyze a 
way to bypass them. 

• Good feature selection – make classifiers difficult to reverse engineer through careful 
selection of features which are kept secret and possibly even mapping raw features into a 
different feature space altogether. 

• Limited/misleading feedback – provide feedback to attacker that provides as little 
information as possible revealing their level/lack of success during the probing attack. 

Future research should take into account and analyze these defensive measures and include an 
investigation into the efficacy of the defensive measures when applied to specific ML algorithms. 
Utilizing the analysis method described in the above experiments, future experiments may be run 
in order to paint a better picture of the defensive capabilities of ML algorithms in adversarial 
environments. 
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APPENDIX A - Data Mining in Cyber Operations (Cybersecurity Systems for Human 
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APPENDIX B - Evaluating data distribution and drift vulnerabilities of machine learning 
algorithms in secure and adversarial environments (SPIE DSS 2014) 

Evaluating data distribution and drift vulnerabilities of machine 
learning algorithms in secure and adversarial environments 
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Abstract 
Machine learning is continuing to gain popularity due to its ability to solve problems that are 
difficult to model using conventional computer programming logic.  Much of the current and past 
work has focused on algorithm development, data processing, and optimization.  Lately, a subset 
of research has emerged which explores issues related to security.  This research is gaining traction 
as systems employing these methods are being applied to both secure and adversarial 
environments.  One of machine learning’s biggest benefits, its data-driven versus logic-driven 
approach, is also a weakness if the data on which the models rely are corrupted.  Adversaries could 
maliciously influence systems which address drift and data distribution changes using re-training 
and online learning.  Our work is focused on exploring the resilience of various machine learning 
algorithms to these data-driven attacks.  In this paper, we present our initial findings using Monte 
Carlo simulations, and statistical analysis, to explore the maximal achievable shift to a 
classification model, as well as the required amount of control over the data. 

Keywords: Adversarial Machine Learning, Intrusion Detection, Monte Carlo, Hidden Markov 
Models 

Introduction  
The primary job of a security administrator is to secure resources at every level from unauthorized 
access and intrusions. It is critical to any organization to secure the network against adversaries 
both external and internal. In the course of implementing defensive measures for network 
protection against malicious adversaries, an administrator needs to understand the approach 
adversaries take in trying to compromise their systems. This knowledge goes a long way towards 
enabling the administrator to harden the network against unauthorized access and intrusions. 
Increasingly, Machine Learning-based Intrusion Detection Systems (ML-IDS) are used in this 
capacity0. An ML-IDS uses machine learning (ML) techniques to analyze network traffic to create 
a model which specifies either general patterns of normalcy or those indicative of an intrusion. It 
is important to have a greater understanding of the strengths and weaknesses of common ML 
algorithms in order to optimize defensive capabilities of ML-IDS. This paper discusses the risks 
involved with utilizing ML in an adversarial environment, such as intrusion detection, and presents 
an evaluation of a toy example, an anomalous color detector which utilizes Hidden Markov Models 
(HMMs). 

Background 
Machine learning and data/concept drift 
Machine learning is a branch of artificial intelligence which focuses on allowing a computer to 
learn representative patterns and rules from sample training data or past experiences which may 
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be generalized to solve specific problems. An ML system becomes better at its job over time by 
iteratively performing its operations.  

Often, an ML system is burdened with large non-stationary streams of data that drift over time0. 
This is also referred to as “concept drift.”0,0,0,0 This is a concern as it means that new data is being 
provided that may inadvertently be misclassified by an outdated model. The solution is to include 
re-training for the ML system into the other ongoing processes in place to maintain classification 
and prediction accuracy. This will ensure that user interactions with changing functions are 
included in the models used by the ML system. When ML is used in applications which utilize 
continuous cycles of retraining and model updating from new data input they are referred to as 
online ML. 

Machine learning in an adversarial environment 
Unfortunately, ML systems sometimes operate in environments that include an adversary.  Such 
environments commonly listed in other research include Spam filtering0, Intrusion Detection 
Systems0 and fraud detection systems0. These are environments in which an opponent would gain 
an advantage by finding a way to avoid or otherwise subvert the established ML system. 
Adversarial learning takes place when an ML system undergoes training with data collected from 
an adversarial environment0. In nearly every case, there is no known or obvious opponent that is 
providing adversarial data to an online ML system’s training data. In an unsupervised ML system, 
there is the possibility of such data effectively poisoning the training dataset and thus introducing 
a weakness that must be mitigated0. Often, as mentioned above, ML systems utilize retraining and 
online learning to account for general concept drift and to avoid a high rate of false positives, 
which further expands the risk of an adversary tainting the training data. This is a factor that few 
ML researchers take into account while developing new algorithms and techniques. Recently 
however, this topic has begun to gain traction and the field of adversarial ML has begun to emerge. 
Specifically Huang et al define adversarial ML as “the study of effective machine learning 
techniques against an adversarial opponent.”0 

Intrusion detection systems 
Of the several adversarial environments where we find ML used, the IDS is the most exciting and 
undergoing the greatest change in research. The two ways a network and its resources can be 
secured are to: a) preventatively implement rules/policies for use and apply patches to applications 
to avoid obvious and readily fixed flaws in security; b) provide a reactive system to intercept 
security violations as they are occurring. An IDS is one such reactive measure. An IDS is an 
application, and in some cases an appliance, that is designed to monitor network and/or computer 
system operations. The IDS is designed to monitor for malicious activity or other usage policy 
violations which may present a security threat to the network or computer system being monitored 
and is given rules for how to respond to these violations based upon severity0. The technique used 
by an IDS to detect malicious activity falls into one of two categories: signature-based detection 
or anomaly-based detection. Signature-based detection, also known as misuse detection, examines 
network traffic and log files, searching for specific patterns, or signatures, that are known to be 
indicative of an intrusion0. An anomaly-based IDS utilizes a baseline of normal network behavior, 
which it either learns or has specified by an administrator.  This baseline is made up of heuristics 
or rules that describe what constitutes normal behavior0.  Intrusions are then identified by detecting 
a statistical divergence from the norm, rather than looking for specific signatures. 

Machine learning-based intrusion detection 
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An IDS that uses ML to handle creation of rules and processing of data according to those rules is 
called an ML-IDS. Ariu identifies protecting web applications with IDS as necessary and a “tricky 
task” as “they are in general large, complex and highly customized.” Ariu further states that 
signature based IDS are not able to defend adequately in the face of zero-day attacks and the 
complex rules that would be required for complex web applications. As he suggests, anomaly-
based solutions have the greatest potential and these are found in ML-IDS0.  Barreno et al. agree 
with this assessment as they see the strength of an ML-IDS is in being able to identify “novel 
differences in traffic.”0 ML techniques have proven to be effective for anomaly-based intrusion 
detection, as they provide a method for automatically learning a model of normalcy that new 
incoming traffic can be evaluated against0.  As the field of ML continues to explode in popularity, 
and as anomaly-based IDSs continue to become more in demand due to their ability to detect never 
before seen attacks, ML-IDSs will soon become much more prevalent0. 

ML-IDS in an adversarial environment 
Unfortunately, IDSs tend to operate in an adversarial environment in which an opponent would 
reap a great benefit by cleverly causing misclassifications, an aspect which most ML researchers 
do not take into account. The greatest concern, as suggested above, is that data drift will be 
introduced to the training data for an ML-IDS which uses unsupervised learning. This could result 
in creating rules which overfit the training data leading to false positives due to concept drift or, 
worse yet, new training data at the edges of the detection domain producing new models which 
allow previously flagged malicious communication to be allowed by the IDS0. This last concern 
is the greatest threat to a network’s defense and is the threat the simulations in this paper are 
concerned with understanding better. There are essentially three sources we have identified that 
may cause data drift: 

1. Random noise and concept drift from the network and users 

2. Adversarial drift due to nonspecific malicious probing exploring the network which is 
building what a penetration tester calls a “footprint” of the network0,0 

3. Adversarial drift due to specific targeting of the network by an adversary in a persistent 
and threatening manner trying to measure the efficacy of rules and possibly even to insert 
edge data to influence training to later allow  malicious connections as authentic0 

The goal of an ML-IDS is to provide accurate protection which is robust and uses generalized 
models. In order to do this, it must accurately differentiate between normal data drift and noise, 
leaving the resources defended uncorrupt and uncompromised. Thus, due to the increased 
prevalence of anomaly-based ML-IDSs operating in adversarial environments, it is our belief that 
it is essential to analyze the underlying anomaly detection ML algorithms utilized by these IDSs 
to determine their resilience to adversarial drift. 

Adversarial ML taxonomy 
Barreno et al. created a taxonomy to categorize potential attacks an adversary may employ against 
an ML system. Table 1 below is reproduced from the paper “The security of machine learning.”0 
 

Table 1: Taxonomy of attacks against ML systems with examples (captured from Barreno 
et al.0) 
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This taxonomy was designed to address how an attack can affect the ML system. An attack has 
three dimensions: the Influence, the Security Violation and the Specificity of the attack. Influence 
is either causative or exploratory; the Security Violation attacks either integrity or availability; and 
the Specificity is either targeted or indiscriminate0. 

Integrity of the system is a measure that demonstrates the authenticity of data as having not been 
altered from origination or otherwise corrupted by malicious or accidental means. An Integrity 
attack is destructive in nature. Availability is a measure that represents how readily the data is 
accessed and used as intended by authorized users for intended and authorized purposes. An 
availability attack is a denial of service, either specific or large-scale0. 

The approach adversaries use may be causative, in which they take actions to bring about changes 
in the learning model through influence over the training data, or else exploratory in which their 
actions simply probe/investigate for potential weaknesses that can be exploited with another 
action. These causative and exploratory actions can be of two forms: targeted and indiscriminate. 
Targeted and indiscriminate attacks differentiate in their specificity and scope. 

A targeted causative attack against integrity is an attack which chooses a specific intrusion and 
attempts to alter the ML training to make the ML system model allow this specific intrusion.  This 
type of attack has been addressed very little in existing research.  Therefore, we believe that it is 
essential to study the risk of an ML algorithm to such an attack. The remainder of this paper details 
initial experiments to analyze the risk to an HMM algorithm, the results of which may be built 
upon for future experiments and analysis. 

Experiment 
Goals 

Our work focused on evaluating an anomaly-based ML algorithm's resilience to targeted causative 
integrity attacks.  Under this type of attack, an adversary attempts to cause a specific point which 
is otherwise classified as anomalous by the learning model to be misclassified as normal through 
influence over the training data.  The initial experiment focused on evaluating the extent to which 
an adversary could affect the algorithm's model and the amount of control an adversary would 
require over the training data in order to cause misclassifications in the resulting learning model. 

Assumptions 
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In a true adversarial environment, the amount of information available to an adversary is often 
limited.  It is reasonable to assume that the attacker will not know the exact data set used for 
training the classification model.  However, an attacker may very well be aware of general trends 
in the data and what generally represents “normal” data.  For example, in the field of spam 
detection, “clean” words tend to stay somewhat constant from organization to organization and 
common spam databases are freely available online to give an idea of what is generally flagged.  
From this, a clever adversary may be able to create a plan for tricking a spam filter.  Therefore, in 
our experiments, we assume that our “normal” data used to train the classifier comes from a 
probability distribution which the adversary is aware of.  Our initial experiments utilize training 
data consisting of numerical values randomly generated from a Gaussian (normal) distribution. 

Additionally, our experiments were run under the contamination assumption0 – the adversary is 
able to send points that the algorithm will use during training.  This assumption was implemented 
in two different ways.  In the first scenario, the adversary is able to arbitrarily add custom points 
to the training set as desired.  This may be the case if the attacker somehow has access to the 
database and wishes to discreetly add points, or if the adversary has knowledge of when initial 
data collection and training will be taking place, before a classification model has been 
implemented, and inserts specific training points at that time.  This presents a worst case scenario 
for the algorithm to defend against.  In the second scenario, the algorithm is an online learner 
which continually retrains with the new data presented to it.  However, it only accepts data for 
retraining which is classified as normal by the previously existing model.  Therefore, any insertion 
points must appear to be benign, presenting a greater obstacle for an adversary. 

Monte Carlo simulations 

Since our experiments rely on randomly generated data from a distribution, Monte Carlo 
experiments are used to obtain results.  Monte Carlo experiments find solutions to problems by 
accumulating and aggregating the results of multiple runs using random data from the same 
probability distribution, also known as repeated random sampling.  Due to time and equipment 
constraints, the number of iterations used in our experiments was limited. 

Hidden Markov Models 

Our initial experiments focused on the evaluation of Hidden Markov Models (HMMs), an ML 
algorithm commonly used for anomaly detection.  An HMM consists of hidden states which follow 
the Markov property and have associated initial and transition probabilities.  In addition, an HMM 
consists of observed variables, with each variable having a certain probability of occurring in each 
hidden state.  Sequences of observed variables are used to train the HMM and learn the hidden 
state and observed variable probability matrices.  Once learned, these probabilities are used to 
determine the probability score of new test observation sequences0. Again, due to time and 
equipment limitations, other ML algorithms are not evaluated in this paper.  However a general 
approach has been created as a result of this work, which will greatly simplify future suggested 
evaluations. 

Experiment setup 

In order to illustrate the above concepts and concerns, we conducted experiments utilizing an 
anomaly detector designed to classify color values as either normal or anomalous based on their 
RGB values.  The RGB value of a color is the extent of red, green, and blue the color contains, 
represented as integer values between 0 and 255 inclusive.  Therefore, each training point is a 
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vector of integers of length three.  Each training point's red, green, and blue values were sampled 
from a Gaussian distribution with a mean of 127 and a standard deviation of 30.  Figure 1 displays 
2000 colors randomly sampled from this distribution, plotted on the Cartesian axes.  The X axis 
represents the red value, the Y axis represents the green value, and the Z axis represents the blue 
value. 

 

Figure 1: 2000 random colors from a Gaussian distribution 
The classifier is then created by using color values sampled from this distribution to train an HMM.  
Future points are tested against the resulting HMM and given a probability score.  If the score is 
below a certain threshold, then the point is classified as anomalous.  Repeatedly training HMMs 
with points from this distribution, and then testing the probability scores of points from the same 
distribution against the resulting model, consistently revealed 9.0x10-9 to be an appropriate 
threshold value which would cause points close to the mean to be classified as normal and those 
far from the mean to be classified as anomalous.  This threshold value was used for all subsequent 
experiments. 

The JAHMM library0 was used in our experiments to train and test the HMM models. We chose 
to use three hidden states and used a K-Means clustering based learner to initialize the probability 
matrices.  The Baum-Welch algorithm is then run for ten iterations to fully train the HMM and the 
forward algorithm is used to determine the probability of new points. 

Two separate targeted causative integrity attacks were investigated.  The first involved an 
adversary who desires for the color green-yellow (RGB value of [173, 255, 47]) to be classified as 
normal, and in the second, the adversary desires goldenrod (RGB value of [255, 193, 37]) to be 
classified as normal.   

Results and discussion 
Initially, experiments were carried out to determine the probability score of the adversary’s colors 
when tested against an HMM trained with a varying number of points sampled from the Gaussian 
distribution.  For each training set size, 100 iterations of sampling, training, and testing were run.  
The mean and median values of those iterations are presented in Figure 2.  These experiments 
revealed that the test score of the points is not dependent on the number of points in the training 
set.  Therefore, the same threshold value may be held constant for all ensuing experiments with 
this distribution, regardless of the number of points used.  The average probability score of green-
yellow over all experiments was 1.60x10-11 and the average probability score of goldenrod was 
1.75x10-12, each of which is well below the set threshold value of 9.0x10-9.  Also of note, is that 
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the median score for both colors remained at a value of zero until there were roughly 24,000 
training points.  This is due, in part, to the mechanics of an HMM.  If any of the test point’s values 
were not seen during training, then the test is much more likely to return a probability of 0 for the 
entire point.  For example, if a value of 255 is not encountered during training, then both green-
yellow and goldenrod will likely have a probability of 0.  As the number of training points 
increases, the likelihood of encountering each value in the test colors at least once increases. 

 

Figure 2: Initial probabilities of selected anomalous points 
Next, experiments were conducted to determine the effect an adversary could have through the 
insertion of a single point, in terms of causing the chosen outliers to appear more probabilistically 
normal.  Our first implementation of the contamination assumption was used during this 
experiment, meaning that the adversary was free to add any arbitrary point to the training data set.  
The point which would have the greatest impact on the HMM’s ability to detect the specific 
anomaly was determined by solving the following equation: 
 

𝑥𝑥∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑥𝑥 𝑔𝑔(𝑥𝑥0)𝑥𝑥 − 𝑔𝑔(𝑥𝑥0)    

 (1) 

 

where x represents a potential insertion point, x0 represents the attacker’s chosen anomaly, g(x0) 
represents the probability of x0 according to the HMM trained with its current training set, and 
g(x0)x represents the probability of x0 according to the HMM trained with point x injected into the 
training set. 

A particle swarm optimization algorithm0 was used to quickly find a rough solution to the equation.  
PSO works by placing a certain number of “particles” into the solution space which then, for a 
certain number of iterations, travel to new locations searching for an optimal solution.  Particle 
movement is dictated by mathematical calculations based on the particle’s position and velocity, 
the best point seen by the particle, and the best point seen by any particle.  The PSO was 
implemented using the JSwarm library, and was configured to use 20 particles and run for 20 
iterations. 

The training set consisted of a varying number of color values sampled from our Gaussian 
distribution in order to determine the correlation between training set size and the adversary’s 
ability to alter an anomalous point’s probability with a single insertion point.  For each training 
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set, the HMM was trained and the anomalous point’s probability score was determined.  Then, an 
insertion point was determined by solving equation 1 using PSO, the point was added to the 
training set, the HMM was retrained, the anomalous point’s new probability score was computed, 
and the difference between the two probability scores was calculated.  For each training set size, 
10 iterations were run, and the mean values of those iterations are displayed in Figure.  The results 
reveal a function nearly identical to the one displayed in the following equation:  
 

𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑐𝑐 ∗ 𝑛𝑛−1     
 (2) 

 

where eff is the maximum effect of a single point, c is a constant, and n is the number of points in 
the training set. 

The effect that an adversary can have on the probability score of an anomalous point using a single 
insertion point has an almost perfect inverse relationship with the number of points in the training 
set.  This negative correlation implies that increasing the size of the training set may mitigate some 
of the risk of a targeted causative attack against an ML algorithm.  However, the time and resource 
cost of training an ML algorithm increases as the number of training points increases, and at some 
point, this cost must be weighed against the potential impact of an adversary. 

 

Figure 3: Effect of a single insertion point on selected anomalous points 
Experiments were then run to determine exactly what effort would be required by an adversary in 
order to trick the HMM into believing that the chosen anomalous colors were, in fact, normal.  The 
goal of the experiment was to learn how susceptible an HMM is to a targeted causative integrity 
attack.  In the first set of trials, the adversary is again given the ability to arbitrarily add points to 
the training set.  It is assumed that points can only be added to the data set, not removed, and that 
the adversary is the only one adding data.  For varying size training sets, the process described in 
Figure 4 is followed in order to determine the number of points an adversary would have to inject 
in order to cause the desired misclassification.  In the process, I is equal to the list of injection 
points selected by the adversary, g(x0)I is equal to the probability of x0 according to an HMM with 
I injected into the training set, and γ is equal to the probability threshold. 
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Figure 4: Process to determine effort required by adversary under scenario 1 
For each training set size, this iterative process was carried out 10 times, and the results were 
aggregated. Figure 5displays the mean values of these runs.  The relationship between the size of 
the training set and the number of insertion points required to create a misclassification is relatively 
linear, which implies that increasing the amount of points in the training set will steadily increase 
the amount of points necessary for an adversary to force specific misclassifications.  However, the 
percent of control over the training set that the attacker needs remains fairly constant.  In order to 
force green-yellow to be misclassified, the attacker needed to insert 0.3701% of the original 
training set on average and in order to force goldenrod to be misclassified, the attacker needed to 
insert 0.7344% of the training set on average.  The number of points necessary to insert and the 
percent of the training set necessary to control appears to be related to the initial probability of the 
anomalous point.  Goldenrod, which had a lower initial probability, required nearly twice as much 
control over the training set. 

 

Figure 5: Effort required by adversary to cause misclassification of selected anomalous 
points under scenario 1 

The contamination assumption was then limited somewhat for the next set of experiments.  In 
these trials, it is assumed that a classification model has already been trained and is operational, 
and that the adversary does not have direct access to the data base.  The classifier uses an online 
learner which continually retrains when presented with new input, but only if the new input is 
classified as normal by the existing model.  This requires the adversary to craft points which appear 
normal, but are designed to be similar to the selected anomalous point in order to slowly shift the 
probability models of the learner, causing the anomalous point to appear normal.  Under this 
scenario, the process shown in Figure 6 was followed using various size training sets in order to 
determine the number of points an adversary must insert to cause a specific misclassification. 
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Figure 6: Process to determine effort required by adversary under scenario 2 

Due to time and equipment limitations, this process was only carried out for 5 iterations for each 
training set size.  Figure 7 displays, for both target colors, the mean values of these iterations under 
this scenario, as well as the results of the previous scenario for comparison.  Again in this scenario, 
there appears to be a linear relationship between the number of points in the training set and the 
number of points an adversary must inject to cause the desired misclassification.  However, 
requiring that new input points be classified as normal before being used for retraining nearly 
doubles the effort required by an adversary.  On average, the adversary required 0.3701% control 
of the training set in scenario one and 0.6153% control in scenario two in order to force a 
misclassification of green-yellow.  In scenario one, goldenrod required 0.7344% control of the 
training set, and in scenario two it required 1.0981% control.  The technique utilized in scenario 
two of validating the normalcy of a point before including it in the training set offers a potential 
strategy for mitigating the risk of a causative attack against an ML-based anomaly detector by 
increasing the amount of control required by the adversary.  This approach, however, may not 
allow for natural concept drift, unless it is introduced slowly over time, without occurring too 
drastically different from the norm.   

 
Figure 7: Effort required by adversary to cause misclassification of selected anomalous 

points under scenario 1 and 2 

Also of note in these experiments is that if all values from the anomalous color do not appear at 
least once during training, then it will be highly unlikely to achieve a probability score above zero. 
For example, when the adversary’s target color is green-yellow, the values 173, 255, and 47 should 
all be in the training set.  If, let’s say, 255 did not appear in the training set, then all hidden states 
in the HMM would likely have an associated probability of zero for that value, which would cause 
any sequence of values containing 255 to have a probability of zero.  The adversary would not be 
able to change this via insertion, because any points containing 255 would be flagged.  Therefore, 
training sets where the anomalous point had an initial probability of zero were not considered in 
these experiments, meaning that, on average, the anomalous point had a slightly higher initial 
probability under scenario two than under scenario one. 
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Conclusions 
In this paper, we discussed an emerging field of research known as adversarial ML.  We argue that 
due to its proven ability to discover and generalize patterns, ML will continue to become more 
widely used in operational environments.  However, these environments often include an 
adversary, a challenge which is rarely accounted for during the development of the ML algorithms.  
One such technology that utilizes ML in an adversarial environment is an IDS.  It is essential that 
an IDS remains secure, and we argue that understanding the potential for an adversary to subvert 
the underlying ML algorithms is an important step towards improving a network’s defensive 
capabilities. 

We conducted base-line experiments in order to better understand and demonstrate what effort and 
level of control over the training data an adversary would require in order to conduct a targeted 
causative integrity attack against an ML algorithm. These experiments utilized a Hidden Markov 
Model in order to detect anomalous colors based on their RGB values. Training data was drawn 
from a Gaussian distribution and Monte Carlo simulations were run in order to provide aggregate 
results.  The experiments reveal an inverse relationship between the number of points contained in 
the training set and the potential negative impact of a single insertion point.  Additionally, there 
appears to be a linear relationship between the number of points in the training set and the amount 
of effort required by an adversary to cause a desired misclassification.  The trends and conclusions 
identified from these experimental results are summarized in Table 2. 

Table 2: Trends and conclusions 
Trend Explanation 

Larger training set improves 
defensive capabilities 

As the training set size increases, this increases the requisite number of points an 
adversary needs to produce in order to induce adversarial drift.  This increases 
the effort required by the adversary to calculate the necessary points and to 
introduce them into the actual data set. 

Highly anomalous points 
require more effort by the 
adversary 

The experiments showed that goldenrod, which had an average initial probability 
of 1.75x10-12 required nearly twice as many insertion point as green-yellow 
which had an average initial score of 1.60x10-11. 

Machine learning algorithms 
not overly secure from 
adversarial drift 

In the experiments above, as the training set size increased, the amount of points 
required by the adversary increased. However, the required percent control over 
the training set remained relatively constant.  This value was below 1% in the 
first test cases despite the test points being considerably well below the anomaly 
threshold. 

Requiring insertion points to 
be classified benign before 
inserting into training set 
increases adversary’s effort. 

In the second set of experiments, we observed that the number of points required 
by the adversary to cause adversarial drift at least doubles from the number 
required in the first set. 

 

Future research areas based on this research should include analysis of different ML algorithms to 
verify the trends identified in this paper and datasets based on alternative data distributions and 
feature spaces.  Additionally, Barreno et al. describe various defensive measures which may be 
utilized to harden an ML system0.  These techniques include: 

• Reject on negative impact (RONI) defense – measures effects of each training instance and 
rejects points which are seen to have a negative impact on classification 
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• Robust algorithms – based upon Robust Statistics, the goal is to create a procedure which 
will limit the impact of deviant points by accounting for qualitative robustness, the 
breakdown point and the influence function of the procedure 

• Online learning with experts – uses a set of classifiers each designed to provide a different 
security property and predictions/advice for training 

• Hide training data – if access to the training data is denied, an adversary is unable to 
determine the exact decision boundaries of the models used by the ML so as to analyze a 
way to bypass them 

• Good feature selection – make classifiers difficult to reverse engineer through careful 
selection of features which are kept secret and possibly even mapping raw features into a 
different feature space altogether 

• Limited/misleading feedback – provide feedback to attacker that provides as little 
information as possible revealing their level/lack of success during the probing attack. 

Future research should take into account and analyze these defensive measures and include an 
investigation into the efficacy of the defensive measures when applied to specific ML algorithms. 
Utilizing the analysis method described in the above experiments, future experiments may be run 
in order to paint a better picture of the defensive capabilities of ML algorithms in adversarial 
environments. 
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Abstract— Machine learning is rapidly emerging as a valuable technology thanks to its ability 
to learn patterns from large data sets and solve problems that are impossible to model using 
conventional programming logic.  As machine learning techniques become more 
mainstream, they are being applied to a wider range of application domains.  These 
algorithms are now trusted to make critical decisions in secure and adversarial environments 
such as healthcare, fraud detection, and network security, in which mistakes can be 
incredibly costly.  They are also a critical component to most modern autonomous systems.  
However, the data driven approach utilized by these machine learning methods can prove to 
be a weakness if the data on which the models rely are corrupted by either nefarious or 
accidental means.  Models that utilize on-line learning or periodic retraining to learn new 
patterns and account for data distribution changes are particularly susceptible to corruption 
through model drift.  In modeling this type of scenario, specially crafted data points are 
added to the training set over time to adversely influence the system, inducing model drift 
which leads to incorrect classifications.  Our work is focused on exploring the resistance of 
various machine learning algorithms to such an approach.  In this paper we present an 
experimental framework designed to measure the susceptibility of anomaly detection 
algorithms to model drift.  We also exhibit our preliminary results using various machine 
learning algorithms commonly found in intrusion detection research. 
Keywords—adversarial machine learning; cyber security; intrusion detection systems; model 
drift 

Introduction 
A security administrator maintains a constant vigilance over their network resources using a variety 
of security tools. Most security plans include signature-based detection and prevention systems in 
order to effectively protect against known threats and mitigate known vulnerabilities. While daily 
updates and changes to security policy, processes, and functions tend to be minimal and focused 
upon anticipating and intercepting system compromises, the administrator’s single greatest fear is 
the threat of zero day exploits. Zero day exploits are based upon currently unknown and unpatched 
vulnerabilities that conventional signature-based protections are not equipped to handle. Machine 
learning based intrusion detection systems (ML-IDS) are increasingly being implemented to 
account for the inadequacies of signature-based methods [1][2].  These machine learning (ML) 
solutions are quickly becoming a popular choice due to ML’s ability to generalize, learn 
representative patterns indicative of intrusions, create representations of normalcy, and detect 
anomalies straying from the established models.  Unfortunately, as these ML-IDS operate and learn 
patterns in a highly contested environment, they become susceptible to corruption.  Either through 
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inadvertent or deliberate means, corrupted data may be introduced into the learning model, resulting 
in model drift [3][4].  This is a key limitation of ML systems and requires the developer to 
understand the inherent weaknesses of the underlying learning processes. 

In this paper, we present a systematic experimental framework based around Monte Carlo 
simulations, designed to measure the resilience of machine learning algorithms to model drift.  In 
addition, we discuss the preliminary results of experimental iterations run against several anomaly 
detection algorithms as well as the effects of model drift on an open-source intrusion detection 
system which relies on these methods. 

Background 
Machine Learning 
Machine learning is a branch of artificial intelligence which focuses on allowing a computer to learn 
representative patterns and rules from sample training data or past experiences which may be 
generalized to solve specific problems.  Due to its advanced ability to automatically glean 
meaningful information from large datasets, ML is quickly appearing more and more in fielded 
systems.  As it becomes more trusted, ML is increasingly being applied within secure environments 
to make critical decisions and identify threats [4][5][6][7][8]. 

Intrusion Detection Systems 
An intrusion detection system (IDS) is an application or appliance that is designed to monitor 
network and/or computer system operations for malicious activity and other usage policy violations 
that present a security threat to the monitored system.  An IDS traditionally uses predefined rules 
based on known threats in order to assess the severity of the threat and react accordingly. These 
types of systems are known as signature-based IDSs. Alternative methods involving the use of 
machine learning, however, have recently gained popularity and are expected to continue to do so 
[4]. This is due to ML’s ability to overcome signature-based detection’s greatest flaw which is the 
inability to detect novel or zero-day attacks.  The most popular forms of ML-IDS utilize anomaly-
detection, a method in which algorithms first build a model of normalcy using benign network 
traffic and then evaluate new traffic against the model to detect behaviors or patterns deviating from 
this established normalcy [2][8].  These methods have been shown to be effective at identifying 
potential threats to the system [2][9].  Anomaly detection is often the popular choice over other 
machine learning techniques such as binary classification because it is often difficult to attain recent 
and representative malicious samples on which to train the models. 

Adversarial Machine Learning 
As stated before, machine learning algorithms are sometimes deployed within adversarial 
environments such as intrusion detection, spam filtering and fraud detection where they are 
required to secure a system from unauthorized access [5]. Unfortunately, due to the nature of 
unsupervised machine learning algorithms, they are heavily targeted by the adversaries they are 
intended to protect against. This is because such a great advantage can be gained by the adversary 
if they are able to subvert and infiltrate the system through the system’s own ML processes.  This 
is a factor few ML researchers take into account while developing new algorithms and techniques 
[4]. 

The authors of [3] have created a three dimensional taxonomy designed to address how an attack 
can affect an ML based system. These dimensions are Influence, the Security Violation and the 
Specificity of the attack. The dimensions are broken down further into sub-categories: Influence 
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is either causative or exploratory; the Security Violation targets either integrity or availability; and 
the Specificity is either targeted or indiscriminate. Our research mainly focuses on studying an ML 
system’s resistance to a Targeted Causative attack against the Integrity of the learning system. In 
such an attack, an adversary chooses a specific anomalous point and makes an effort to influence 
the ML system models to misclassify the test point. 

This misclassification by the system is induced by inserting crafted points into the ML algorithm’s 
training data to drift the learning model in a desired direction.  This is a form of what is known as 
adversarial drift. This process creates rules which may overfit the current training data, leading to 
false positives, or worse yet, creates new models from data at the edge of the detection domain and 
allows previously flagged malicious data into the system.  The latter is of great concern, especially 
for an ML-IDS.  

We have identified three main sources from which model drift, which is any shift in the established 
baseline of normalcy, can occur: 

• Random noise and concept drift from the normal network traffic and its users. 

• Adversarial drift from nonspecific, malicious probing of the network to create what 
penetration testers call a “footprint.” 

• Adversarial drift from specific targeting of the network in a persistent and threatening 
manner to measure the efficacy of rules and possibly even insert edge data to influence 
training to later allow malicious connections as authentic ones. 

Unfortunately for system administrators, it is often incredibly difficult to differentiate between normal model drift 
over time and deliberate adversarial model drift.  Additionally, new patterns and model drift are often accounted for 
through online learning or by periodically retraining the models.  This gives an adversary an ideal means for inserting 
malicious data into the learning models [4]. 

Experiment Framework 
Our work focused on studying the resilience of an IDS’s underlying ML algorithms to induced 
model drift.  In this section, we describe an experimental framework that was created as a result 
of this work for gathering statistical measurements and comparing various algorithms. 

Goals 
The main goals of our work were to develop a framework to study and test ML algorithms which 
have or may be used in intrusion detection systems. This research was done in an effort to 
demonstrate the strengths and weaknesses of these algorithms in regards to their susceptibility to 
adversarial drift and offer suggestions for why and in what ways they can be effectively used in an 
IDS. We intended to create a generic, universal framework to allow for the simple incorporation 
of additional algorithms using various training data sources.  We wanted to be able to compare 
multiple algorithms, multiple implementations of similar or identical algorithms and to create 
repeatable experiments.  Through experimental iterations, the framework should provide statistical 
measurements and analysis that better inform a system administrator. 

Assumptions 
In an authentic network, an intruder would have limited access to information about an ML-IDS 
which has been deployed. While we certainly have a concern for external threats, the worst case 
scenario is an insider threat or an intruder who has already gained access to the internal network. 
We base our initial assumptions on this perspective.  In order to have a worst case scenario baseline 
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where a potential adversary would have near full control over the IDS and all associated and 
requisite resources, several assumptions were made to start with. 

We operate under what is known as the contamination assumption [10].  This means that the 
adversary has the ability to insert points that will be used during retraining of the ML-IDS.  As 
mentioned above, model drift is often accounted for through the use of retraining and online 
learning, so it is not unreasonable to assume an adversary could take advantage of this window to 
insert data.  For our work, we limit this assumption to create a slightly more realistic case in which 
insertion points must be classified as benign by the existing classifier in order to be included.  We 
assume that the adversary would wish to remain undetected by including only points that are not 
flagged as suspicious and can be allowed into the re-training dataset via normal traffic through the 
monitoring ML-IDS.  The contamination assumption is necessary if the adversary desires to induce 
drift in the models and force the ML-IDS to consider a point as normal that previous models would 
have otherwise considered anomalous and blocked. 

In initial experiments, we assume the adversary has full knowledge of the IDS, its classification 
algorithms, the training data, and the results of classification.  From this worst case scenario, we 
could potentially dial back the assumed knowledge and access privileges an adversary might have 
in order to gain a more realistic view of the measured weaknesses for each algorithm in an 
adversarial environment. 

Approach 
We chose to design our framework around Monte Carlo simulations, which is an experimental 
method that relies on repeated random sampling.  This helps eliminate data specific results by 
finding averages across multiple runs, decreasing the variance in our results.  To this end, an 
application program interface (API) was created with interfaces that allow for simply running 
Monte Carlo experiments and adapting new algorithms and data sources for testing. 

To set up an experiment, an ML-IDS was identified and its source code and documentation were 
analyzed to identify the underlying ML algorithms, features included in monitoring and training, 
as well as any perceived constraints in operation.  Research was performed to determine if prior 
investigations of the selected algorithms existed, including documented optimization approaches 
that could be used.  After identifying the type of data processed by the ML-IDS, an anomalous 
point was identified with which to test the algorithm within the simulator. The simulator API was 
extended as appropriate to handle the new algorithm implementation library, the data type the ML-
IDS is designed to process, and the known vulnerability that would be used to model a live threat 
in the experimentation. 

Upon successful integration of the algorithm and data source into the API, the framework allows 
for experiments to be run to identify precisely what effort an adversary would need to expend in 
order to force a misclassification on the selected test point through model drift created by the 
introduction of crafted insertion data into the training set. These experiments may be repeated for 
varying training set sizes, different percentages of control the adversary has over the retrain data, 
and varying algorithm-specific parameters values. For each configuration, multiple iterations are 
run with randomly sampled data from the selected data source and the results are aggregated and 
placed into graphs for further analysis.  This provides the user with an overall picture of the 
resistance of the algorithm to adversarial drift and may be used to compare algorithms. 
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The approach selected for the adversary in the experiments represents a worst case for the defender 
in which each new point introduced by the adversary is added to the training set and causes a 
retrain, as long as the point appears benign to the existing classifier.  The adversary chooses the 
point, which when added to the training set causes the greatest increase in the probability of 
normalcy of the target point.  The general form of this approach is summarized in Fig. 1 in which 
I is equal to the list of injection points selected by the adversary, g(x0)I is equal to the probability 
of x0 according to the model with I injected into the training set, and γ is equal to the anomaly 
threshold. 

 

The framework allows us to test both algorithm-specific and generic optimization approaches for 
selecting the insertion points introduced by the adversary.  A generic approach, such as genetic 
algorithms that repeatedly retrain the algorithm to find the point that has the most optimal effect 
on the test score of the target point, requires less prior knowledge of the algorithms and can 
therefore be applied to a large variety of ML algorithms [7][11].  However, the repeated retrains 
often take a large amount of time, which is infeasible with insufficient resources.  Algorithm-
specific approaches require in-depth knowledge of the algorithms, but run faster and often create 
points which have a greater effect.  For the experiments described below, due to time and resource 
constraints, we chose to develop algorithm-specific methods for selecting insertion points. 

EXPERIMENT 

In order to test the validity of our proposed approach for analyzing the resistance of an IDS’s 
machine learning algorithms to induced model drift, a number of experimental runs were 
performed.  This section describes the various algorithms that were investigated, including an 
open-source IDS which relies on machine learning, and the experimental procedure. 

Centroid Anomaly Detector 
The first algorithm studied was a simple centroid anomaly detector [12].  This algorithm is trained 
by simply finding the empirical mean of the training examples.  An unlabeled data point is then 
tested by calculating its Euclidean distance to the mean, or centroid.  If this distance is greater than 
a determined threshold, then the point is considered to be anomalous.  Calculation of a data point’s 
anomaly score is summarized in (1). 

 ∑
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Despite its incredible simplicity, this algorithm is popular in various security applications [12].  
We chose to run initial experiments with the centroid anomaly detector due to its low computation 

 

Fig. 1. Experimental approach to determine effort required 
by an adversary to force misclassifications 
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time, applicability, and its ability to be easily comprehended and visualized.  Its primary purpose 
is to be used as a baseline experiment to demonstrate our approach. 

Additionally, the optimal undetected approach is relatively straightforward from the adversary’s 
perspective. The adversary determines the vector between the target anomalous point and the 
centroid and inserts a point along this vector at a distance from the centroid equal to the anomaly 
threshold value.  This approach is illustrated in Fig. 2. 

 

Support Vector Machines 

After these baseline experiments, we proceeded to study one-class support vector machines 
(SVMs).  An SVM is a machine learning model which is designed to create a separating plane 
between two classes of data, and a one-class SVM is a special case which separates normal from 
anomalous.  In order to do this, the one-class SVM first maps the training data into the kernel 
space, in our case using the Gaussian kernel shown in (2), and then finds the hyperplane which 
separates a desired fraction of the training points from the origin.  This algorithm was chosen due 
to its relative simplicity and common appearance in ML-IDS research [2][13][14]. 

 )exp()()(),( 2yxyxyxK −−=Φ⋅Φ= γ  (2) 

During our experimentation with this algorithm, we developed a quick method to determine the 
insertion point which will have the near-optimal drift effect from the adversary’s perspective.  The 
adversary simply finds the support vector nearest to the target anomalous point, and inserts the 
point along the vector between the two that is closest to the target anomaly without being flagged 
as anomalous. 

Hidden Markov Models / HMMPayl 
Next, we focused on the evaluation of Hidden Markov Models (HMMs).  An HMM is a machine 
learning model consisting of hidden states which follow the Markov property and have associated 
initial and transition probabilities.  In addition, an HMM consists of observed variables, with each 
variable having a certain probability of occurring in each hidden state.  Sequences of observed 
variables are used to train the HMM and learn the hidden state and observed variable probability 
matrices.  Once learned, these probabilities are used to determine the probability score of new test 
observation sequences.  This algorithm was chosen again due to its relative simplicity as well as its 
common appearance in ML-IDS research [9][15][16]. 

 

Fig. 2. Illustration of the optimal drift strategy against a centroid anomaly detector 
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During this study, we also investigated HMMPayl, an open-source network IDS which utilizes 
HMMs to detect anomalies.  HMMPayl inspects network packet payloads represented as byte 
strings, using the n-grams from these byte strings to train its models.  In an effort to increase 
classification accuracy, HMMPayl uses an ensemble of HMMs, combining the results from each to 
make its predictions [9]. 

Through an investigation of the algorithm, we developed a quick method and heuristic to determine 
the adversary’s near-optimal insertion points.  Since the sequence probabilities returned by an 
HMM are largely driven by the frequency of individual symbols in the training set, we chose to 
focus our approach on these frequencies.  We wanted to target the specific n-grams from the test 
point that contained symbols common in the point but also had low probabilities, meaning that they 
likely contained symbols uncommon in the training set.  Therefore, to create the adversary’s 
insertion points, for a set number of iterations we iteratively added symbols to the insertion point 
according to (3) where T(x) is the number of times symbol x occurs in the test point and Tr(x) is the 
number of times x appears in the training set.  Then, if the constructed insertion point is considered 
anomalous by the existing model, symbols in the point are iteratively replaced by the symbol 
occurring most frequently in the training set until the point is no longer flagged. 

 2
*

)(
)(maxarg

xTr
xT

x
x =  (3) 

Procedure 

Two sets of experiments were run using the Monte Carlo simulation framework.  In the first set, 
the above described algorithms were used to classify color values as either normal or anomalous 
based on their RGB values.  The RGB value of a color is the extent of red, green, and blue the 
color contains, represented as integer values between 0 and 255 inclusive.  Therefore each training 
point is a vector of integers of length three.  The training sets used for these experiments were 
sampled from a Gaussian distribution with a mean of 127 and a standard deviation of 30.  We then 
selected colors that the selected classifiers identified as anomalous, and measured the effort 
required by an adversary to force misclassifications using the outlined approach.  While this data 
set is overly simplistic, it allows us to easily illustrate the above described concepts and to identify 
general trends. 

The second set of experiments was designed to be more realistic, testing the resiliency of the actual 
IDS to adversarial drift using network data.  For these experiment runs, we utilized the DARPA’99 
dataset [17] to train the anomaly detection models and used the HTTP attack dataset from [18] as 
our test points on which to force misclassifications.  Although the DARPA’99 dataset is outdated 
and has been widely criticized [19], it is still highly appropriate and valuable for our needs.  It is 
the most common public dataset used to baseline ML-IDS and lends to the repeatability of our 
experiments.  Additionally, the largest complaint against DARPA’99 is that it is no longer suitable 
for measuring the accuracy of an IDS and its ability to detect intrusions.  However, this is not the 
context for which we are using it.  Our goal was to find appropriately formatted network data and 
some attack point that is flagged as anomalous by the classifier trained on this data.  This approach 
does not consider the overall accuracy of the classifier, but rather its ability to continue making an 
accurate prediction despite adversarial attempts to induce model drift. 
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Results and Discussion 
In this section we discuss the preliminary results of the above described experiments, highlight the 
statistical measurements our framework allows the user to gather, and identify general trends. 

For the first set of experiments using the color RGB data, we selected two colors that were found 
to be anomalous by each of the three chosen algorithms and used these as our test points.  These 
two colors were green-yellow and goldenrod which had RGB values of [173, 255, 47] and [255, 
193, 37] respectively.  We then deployed our algorithm-specific approaches to determine the 
number of points the adversary must insert in order to change the classification of each color.  We 
varied the size of the training set and for each training set size ran multiple iterations with 
randomized data.  The results of these experiments are summarized in Fig. 3.  The y-axis on the 
plots has been scaled logarithmically due to the large disparity between the algorithms.  However, 
it should be noted that the relationship between the training set size and effort required by the 
adversary was in fact linear.  These experiments allow for a simple comparison between algorithms.  
For the purpose of detecting anomalous colors, SVMs appear to be significantly more susceptible 
to adversarial drift than a simple centroid anomaly detector.  This also shows the advantage of using 
a large training dataset for defending against adversarial drift, which must be weighed against the 
increased cost of acquiring data and training. 

 

In the next experiment, for a fixed training set size, we tested each algorithm with a wide variety 
of different colors to determine the number of points necessary for the adversary to insert in order 
to force a misclassification on each.  This value was then compared against the initial test scores 
to gain a better understanding of the relationship between the extent to which a point is anomalous 
and the model’s resistance to adversarial drift towards the point.  The results of this experiment 

 

Fig. 3. Effort required by an adversary to cause 
misclassifications of selected anomalous points using 
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are summarized in Fig. 4. The centroid anomaly detector and HMM both show a clear correlation 
between anomaly score and effort required by the adversary.  The centroid anomaly detector shows 
a positive correlation because its test score represents a distance from normalcy, while HMM 
shows a negative correlation because its test score represents a probability of being benign.  The 
relationship for the SVM is not as clear due to many of the points’ initial test scores rounding to 
zero, but there appears to be a loosely negative correlation.  The initial test score is scaled 
logarithmically (with log(0) set to 0) to make this correlation more clear. 

 

This experimental framework also allows the user to determine values for algorithm specific 
parameters that are the least susceptible to model drift.  For example, Fig. 5 shows the results of 
four different colors tested against different configurations of the centroid anomaly detector.  
These configurations represent different methods for setting the threshold value and for adding 
new points to the training set.  The threshold may be set to either a pre-determined fixed value or 
to a value such that a certain percentage of the training data is considered non-anomalous.  Newly 
received points may either replace a point in the existing training set, retaining a fixed size, or be 

 

Fig. 4.  Effort required by an adversary to cause 
misclassifications of anomalous points using various 
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appended to the end of it.  In the plot, the initial test score of the colors, when averaged across 
varying training set sizes, is compared against the average percent of the size of the original 
training set that the adversary was forced to inject.  This gives a clear indication of which 
configuration causes the most effort for the adversary.  In this instance, setting a fixed threshold 
value and using an infinite training window would be the most secure. 

 

The primary purpose of these initial color RGB experiments was to test the legitimacy of the 
framework’s capabilities and to discover baseline patterns.  The next step was to validate these 
results using the open-source IDS HMMPayl with actual network data.  Initially, we selected an 
intrusion point from the identified attack data set that was consistently flagged by HMMPayl when 
trained with data from the DARPA’99 dataset.  This attack point actually consisted of seven packet 
payloads representing a chunked encoding transfer heap overflow against Microsoft IIS [18].  The 
HMM-specific adversarial approach was applied until each of the seven payloads went undetected 
by the IDS.  This was repeated multiple times with randomly selected normal traffic for varying 
training set sizes.  The results of this experiment are shown in Fig. 6.  A linear relationship between 
the training set size and the number of insertion points required by the adversary immediately 
becomes apparent.  The slope of the best-fit line reveals that on average the adversary need only 
insert 0.486% of the training set size to successfully induce model drift while remaining 
undetected. 

 

Fig. 5. Effort required by an adversary to cause 
misclassifications of four anomalous points using four 
different configurations of the centroid anomaly detector. 
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Fig. 7 displays the results of a single run of an attempt to induce model drift on the models created 
using a training set size of 5000.  This shows the impact after each round of retraining that the 
adversary had on the test score of each of the four initially-flagged payloads from the attack in 
relation to the anomaly threshold. 

 

Similar to the color experiments, we next selected every individual packet payload from the attack 
dataset.  For a fixed training set size of 15000 points, we determined the number of insertion points 
required by the adversary in order to create a misclassification on each payload.  This is compared 
against the initial test score of the payloads to give the security administrator an overall feel for 
the resiliency of the system.  The results of this experiment are summarized in Fig. 8. For the 
selected attack points there is a loosely negative correlation between the initial test score and the 
required number of insertion points.  It can also be seen that the adversary needs to insert no more 
than fifteen non-anomalous points, or 0.1% of the training set, in order to create a misclassification. 

 

Fig. 6. Effort required by an adversary to cause 
misclassification of every packet payload in selected attack 
using HMMPayl  

 

 

Fig. 7. Resulting HMMPayl test score of payloads from 
selected attack after the introduction of each insertion point 
by the adversary 
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Conclusions 

As a result of the work presented in this paper, we have created a methodology to explore the 
susceptibility of algorithms used in research-based ML-IDS to induced data drift while they are 
operating in an adversarial environment. The methodology was developed while examining and 
subsequently testing several anomaly detectors to establish the baseline approach and results. We 
further developed and validated the methodology through analysis of additional algorithms 
implemented in an ML-IDS. We identified potential heuristics to create insertion points in order to 
induce data drift and isolated a usable method for the HMM-based ML-IDS. We then ran a series 
of experiments to thoroughly exercise the HMM-based ML-IDS in order to explore it's 
susceptibility to induced data drift while operating in our tightly controlled adversarial environment. 
We progressed from the overly-simplified RGB values used to establish baseline results to using 
the data from the DARPA '99 dataset and the attack dataset from [18] so as to include real-world 
network traffic data. Our initial experiments demonstrate the type of valuable information that a 
system administrator may gain through the use of our framework, and preliminary results indicate 
that the ML algorithms utilized by ML-IDS are indeed susceptible to induced data drift while 
operating in an adversarial environment.  

There are many interesting and novel directions in which the research may progress from this point 
beyond just further data collection and analysis. Future research should extend to include: 

Exploring algorithms not yet covered which have been used or may be used by other ML-IDS [14].  

Testing alternative libraries that implement included/excluded algorithms to explore sensitivities 
related to implementations across identical algorithms. 

Investigating additional data types that are considered by IDSs, both commercial and in research, 
such as trace and log file parsers, executable analyzers and even multi-session analyzers. 

Studying defensive remediation that can be used to mitigate the vulnerabilities observed as a part 
of this work [3]. 

 
 
 

 

Fig. 8. Effort required by an adversary to cause misclassifications 
of the selected attack packet payloads using HMMPayl trained 
with 15000 points. 
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